Skip to main content
Top
Published in: European Spine Journal 3/2012

01-03-2012 | Original Article

Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods

Authors: Benjamin Ulmar, Stefanie Erhart, Stefan Unger, Kuno Weise, Werner Schmoelz

Published in: European Spine Journal | Issue 3/2012

Login to get access

Abstract

Purpose

Restoration of the anterior spinal profile and regular load-bearing is the main goal treating anterior spinal defects in case of fracture. Over the past years, development and clinical usage of cages for vertebral body replacement have increased rapidly. For an enhanced stabilization of rotationally unstable fractures, additional antero-lateral implants are common. The purpose of this study was the evaluation of the biomechanical behaviour of a recently modified, in situ distractible vertebral body replacement (VBR) combined with a newly developed antero-lateral polyaxial plate and/or pedicle screws and rods using a full corpectomy model as fracture simulation.

Methods

Twelve human spinal specimens (Th12–L4) were tested in a six-degree-of-freedom spine tester applying pure moments of 7.5 Nm to evaluate the stiffness of three different test instrumentations using a total corpectomy L2 model: (1) VBR + antero-lateral plate; (2) VBR, antero-lateral plate + pedicle screws and rods and (3) VBR + pedicle screws and rods.

Results

In the presented total corpectomy defect model, only the combined antero-posterior instrumentation (VBR, antero-lateral plate + pedicle screws and rods) could achieve higher stiffness in all three-movement planes than the intact specimen. In axial rotation, neither isolated anterior instrumentation (VBR + antero-lateral plate) nor isolated posterior instrumentation (VBR + pedicle screws and rods) could stabilize the total corpectomy compared to the intact state.

Conclusions

For rotationally unstable vertebral body fractures, only combined antero-posterior instrumentation could significantly decrease the range of motion (ROM) in all motion planes compared to the intact state.
Literature
1.
go back to reference Alici E, Alku OZ, Dost S (1990) Prosthesis designed for vertebral body replacement. J Biomech 23(8):799–809PubMedCrossRef Alici E, Alku OZ, Dost S (1990) Prosthesis designed for vertebral body replacement. J Biomech 23(8):799–809PubMedCrossRef
2.
go back to reference Banwart JC, Knop C, Lange U, Blauth M (1999) Effect of a crosslink or cerclage on the mechanical stability of an internal fixator. Orthopäde 28:714–722 Banwart JC, Knop C, Lange U, Blauth M (1999) Effect of a crosslink or cerclage on the mechanical stability of an internal fixator. Orthopäde 28:714–722
3.
go back to reference Been HD (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16:70–77PubMedCrossRef Been HD (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16:70–77PubMedCrossRef
4.
go back to reference Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopäde 26:437–449PubMed Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopäde 26:437–449PubMed
5.
go back to reference Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841PubMedCrossRef Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841PubMedCrossRef
6.
go back to reference Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801PubMedCrossRef Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801PubMedCrossRef
7.
go back to reference Claes L, Schultheiss M, Wolf S, Wilke HJ, Arand M, Kinzl L (1999) New radiolucent system for vertebral body replacement its stability in comparison to other systems. J Biomed Mater Res 48:82–89PubMedCrossRef Claes L, Schultheiss M, Wolf S, Wilke HJ, Arand M, Kinzl L (1999) New radiolucent system for vertebral body replacement its stability in comparison to other systems. J Biomed Mater Res 48:82–89PubMedCrossRef
8.
go back to reference Cybulski GR, Douglas RA, Meyer PR, Rovin AR (1992) Complications in three-column cervical spine injuries requiring anterior–posterior stabilisation. Spine 17:253–256PubMedCrossRef Cybulski GR, Douglas RA, Meyer PR, Rovin AR (1992) Complications in three-column cervical spine injuries requiring anterior–posterior stabilisation. Spine 17:253–256PubMedCrossRef
9.
go back to reference Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W (2008) Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429–1437PubMedCrossRef Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W (2008) Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429–1437PubMedCrossRef
10.
go back to reference Eysel P, Hopf C, Füderer S (2001) Kyphotic deformities in fractures of the thoracolumbar spine. Orthopäde 30:955–964PubMedCrossRef Eysel P, Hopf C, Füderer S (2001) Kyphotic deformities in fractures of the thoracolumbar spine. Orthopäde 30:955–964PubMedCrossRef
11.
go back to reference Gebhard F, Schultheiss M (2008) Surgical treatment of fractures of the lumbar spine. In: Käfer W, Cakir B, Mattes T, Reichel H (eds) Orthopaedic spine surgery. An instructional course book. Heidelberg, Steinkopff, pp 129–136 Gebhard F, Schultheiss M (2008) Surgical treatment of fractures of the lumbar spine. In: Käfer W, Cakir B, Mattes T, Reichel H (eds) Orthopaedic spine surgery. An instructional course book. Heidelberg, Steinkopff, pp 129–136
12.
go back to reference Gertzbein SD, Court-Brown CM, Jacobs RR, Marks P, Martin C, Stoll J, Fazl M, Schwartz M, Rowed D (1988) Decompression and circumferential stabilization of unstable spinal fractures. Spine 13(8):892–895PubMedCrossRef Gertzbein SD, Court-Brown CM, Jacobs RR, Marks P, Martin C, Stoll J, Fazl M, Schwartz M, Rowed D (1988) Decompression and circumferential stabilization of unstable spinal fractures. Spine 13(8):892–895PubMedCrossRef
13.
go back to reference Goulet JA, Senunas LE, De Silva GL, Greefield ML (1997) Autogenous iliac crest bone graft. Clin Orthop 339:76–81PubMedCrossRef Goulet JA, Senunas LE, De Silva GL, Greefield ML (1997) Autogenous iliac crest bone graft. Clin Orthop 339:76–81PubMedCrossRef
14.
go back to reference Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMed Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMed
15.
go back to reference Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F (2004) Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine. Chirurg 75:694–701PubMedCrossRef Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F (2004) Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine. Chirurg 75:694–701PubMedCrossRef
16.
go back to reference Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O (1999) Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology. Unfallchirurg 102(12):924–935PubMedCrossRef Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O (1999) Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology. Unfallchirurg 102(12):924–935PubMedCrossRef
17.
go back to reference Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485PubMedCrossRef Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485PubMedCrossRef
18.
go back to reference Kossmann T, Ertel W, Platz A, Trentz O (1999) Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method. Orthopäde 28(5):432–440PubMed Kossmann T, Ertel W, Platz A, Trentz O (1999) Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method. Orthopäde 28(5):432–440PubMed
19.
go back to reference Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13(3):286–293PubMedCrossRef Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13(3):286–293PubMedCrossRef
20.
go back to reference Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14(12):1324–1331PubMedCrossRef Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14(12):1324–1331PubMedCrossRef
21.
go back to reference Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146 Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146
22.
go back to reference Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201PubMedCrossRef Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201PubMedCrossRef
23.
go back to reference Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef
24.
go back to reference Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMedCrossRef Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMedCrossRef
25.
go back to reference Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for the vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419PubMedCrossRef Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for the vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419PubMedCrossRef
26.
go back to reference Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractible implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 29(10):1375–1382CrossRef Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractible implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 29(10):1375–1382CrossRef
27.
go back to reference Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2000) Influence of implants for vertebral body replacement on the mechanical behaviour of the lumbar spine. Orthopäde 3:503–507 Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2000) Influence of implants for vertebral body replacement on the mechanical behaviour of the lumbar spine. Orthopäde 3:503–507
28.
go back to reference Sawin PD, Traynelis VC, Menezes AH (1998) A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 88(2):255–265PubMedCrossRef Sawin PD, Traynelis VC, Menezes AH (1998) A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 88(2):255–265PubMedCrossRef
29.
go back to reference Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleitner T, Kinzl L, Claes L (2000) Vertebral body replacement with bioglas-polyurethane composite in spine metastases–clinical, radiological and biomechanical results. Eur Spine J 9(5):437–444PubMedCrossRef Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleitner T, Kinzl L, Claes L (2000) Vertebral body replacement with bioglas-polyurethane composite in spine metastases–clinical, radiological and biomechanical results. Eur Spine J 9(5):437–444PubMedCrossRef
30.
go back to reference Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100PubMedCrossRef Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100PubMedCrossRef
31.
go back to reference Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM (1997) Four year experience with the AO anterior thoracolumbar locking plate. Spinal Cord 35(5):286–291PubMedCrossRef Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM (1997) Four year experience with the AO anterior thoracolumbar locking plate. Spinal Cord 35(5):286–291PubMedCrossRef
32.
go back to reference Ulmar B, Cakir B, Huch K, Puhl W, Richter M (2004) Expandable titanium cages in vertebral body replacement. Z Orthop 142(6):449–455PubMedCrossRef Ulmar B, Cakir B, Huch K, Puhl W, Richter M (2004) Expandable titanium cages in vertebral body replacement. Z Orthop 142(6):449–455PubMedCrossRef
33.
go back to reference Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef
34.
go back to reference Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef
35.
go back to reference Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1191 cases. Chirurg 68:1286–1291PubMedCrossRef Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1191 cases. Chirurg 68:1286–1291PubMedCrossRef
36.
go back to reference Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550PubMedCrossRef Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550PubMedCrossRef
Metadata
Title
Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods
Authors
Benjamin Ulmar
Stefanie Erhart
Stefan Unger
Kuno Weise
Werner Schmoelz
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 3/2012
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-011-2042-9

Other articles of this Issue 3/2012

European Spine Journal 3/2012 Go to the issue