Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 10/2009

01-10-2009 | Trauma Surgery

A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine

Authors: M. Reinhold, W. Schmoelz, F. Canto, D. Krappinger, M. Blauth, Christian Knop

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 10/2009

Login to get access

Abstract

Introduction

Expandable titanium implants for vertebral body replacement in the thoracolumbar spine have been well established in the reconstruction of the anterior spinal column. Load transfer at the bone-implant interface remains a point of concern. The purpose of the study was to compare the performance in axial load transfer from the implant to the vertebral body in four different implants, all of them in clinical use to date.

Materials and methods

We tested a second generation implant (Synex II) in comparison to three different expandable titanium cages: Synex I, Obelisc and X-Tenz. Twenty-four intact fresh frozen human lumbar vertebrae (L1–L4) were distributed into four identical groups according to bone mineral density (BMD). The BMD was determined by quantitative computed tomography (qCT). Specimens were loaded in craniocaudal direction with a material testing machine (Mini Bionix II) at a constant speed of 5 mm/min. Load displacement curves were continuously recorded for each specimen until failure (diminishment of compressive force (F) and/or obvious implant migration through the vertebral body end plate). One-way analysis of variance (ANOVA) and post-hoc tests (Bonferroni) were applied to detect differences at 1, 2, 3, and 4 mm displacement (F 1–4 mm) between implant groups.

Result

No significant differences were observed with regard to maximum compression force (F max) and displacement (d max) until failure: Synex II (1,782.3 N/4.67 mm); Synex I (1,645.3 N/4.72 mm); Obelisc (1,314.0 N/4.24 mm); X-Tenz (1470.3 N/6.92 mm). However, the mean compression force at 1–4 mm displacement (F 1–4 mm: 300–1,600 N) was highest for Synex II. The difference at 2 mm displacement was significant (p = 0.028) between Synex II (F 2 mm = 879 N) and X-Tenz (F 2 mm = 339 N).

Conclusion

The modified end plate design of Synex II was found to perform comparably at least with regard to the compressive performance at the implant-bone interface. The risk of the new implant for collapse into the vertebral body might be reduced when compared to the competitors.
Literature
1.
go back to reference Andersson GB, Örtengren R, Nachemson A (1977) Intradiscal pressure, intraabdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164PubMed Andersson GB, Örtengren R, Nachemson A (1977) Intradiscal pressure, intraabdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164PubMed
3.
go back to reference Beisse R, Potulski M, Beger J, Buhren V (2002) Development and clinical application of a thoracoscopy implantable plate frame for treatment of thoracolumbar fractures and instabilities. Orthopade 31(4):413–422. doi:10.1007/s00132-001-0285-6 PubMedCrossRef Beisse R, Potulski M, Beger J, Buhren V (2002) Development and clinical application of a thoracoscopy implantable plate frame for treatment of thoracolumbar fractures and instabilities. Orthopade 31(4):413–422. doi:10.​1007/​s00132-001-0285-6 PubMedCrossRef
4.
go back to reference Beisse R, Potulski M, Temme C, Buhren V (1998) Endoscopically controlled division of the diaphragm: a minimally invasive approach to ventral management of thoracolumbar fractures of the spine. Unfallchirurg 101(8):619–627. doi:10.1007/s001130050315 PubMedCrossRef Beisse R, Potulski M, Temme C, Buhren V (1998) Endoscopically controlled division of the diaphragm: a minimally invasive approach to ventral management of thoracolumbar fractures of the spine. Unfallchirurg 101(8):619–627. doi:10.​1007/​s001130050315 PubMedCrossRef
5.
go back to reference Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68(2):74–82. doi:10.1007/BF02678144 PubMedCrossRef Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68(2):74–82. doi:10.​1007/​BF02678144 PubMedCrossRef
6.
go back to reference Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopade 26(5):437–449PubMed Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopade 26(5):437–449PubMed
9.
go back to reference Goldhahn J, Reinhold M, Stauber M, Frei R, Schneider E, Linke B (2006) Improved anchorage in osteoporotic vertebrae with new implant designs. J Orthop Res (in press) Goldhahn J, Reinhold M, Stauber M, Frei R, Schneider E, Linke B (2006) Improved anchorage in osteoporotic vertebrae with new implant designs. J Orthop Res (in press)
10.
16.
go back to reference Jost B, Cripton PA, Lund T, Oxland TR et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141. doi:10.1007/s005860050043 PubMedCrossRef Jost B, Cripton PA, Lund T, Oxland TR et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141. doi:10.​1007/​s005860050043 PubMedCrossRef
17.
go back to reference Junghanns H (1955) Wirbelsäule. In: Buerkle de la Camp H, Rostock P (eds) Handbuch der gesamten Unfallchirurgie, Band Bd. II. Enke, Stuttgart, pp 520–564 Junghanns H (1955) Wirbelsäule. In: Buerkle de la Camp H, Rostock P (eds) Handbuch der gesamten Unfallchirurgie, Band Bd. II. Enke, Stuttgart, pp 520–564
18.
go back to reference Kandziora F, Pflugmacher R, Schaefer J, Scholz M et al (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMed Kandziora F, Pflugmacher R, Schaefer J, Scholz M et al (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMed
20.
21.
22.
go back to reference Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex: comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485. doi:10.1007/s005860000185 PubMedCrossRef Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex: comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485. doi:10.​1007/​s005860000185 PubMedCrossRef
24.
25.
go back to reference Lange U, Knop C, Bastian L, Blauth M (2003) Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement. Arch Orthop Trauma Surg 123(5):203–208PubMed Lange U, Knop C, Bastian L, Blauth M (2003) Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement. Arch Orthop Trauma Surg 123(5):203–208PubMed
26.
go back to reference Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott J, Aebi M (eds) Manual of internal fixation of the spine. Lippincott & Raven, Philadelphia, pp 127–146 Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott J, Aebi M (eds) Manual of internal fixation of the spine. Lippincott & Raven, Philadelphia, pp 127–146
27.
28.
go back to reference McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AAIII (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AAIII (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed
30.
go back to reference Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed
32.
go back to reference Plaue R (1972) Behavior of thoracic and lumbar vertebral fractures: 1. Compression experiments on macerated vertebral bodies. Z Orthop Ihre Grenzgeb 110(2):159–166PubMed Plaue R (1972) Behavior of thoracic and lumbar vertebral fractures: 1. Compression experiments on macerated vertebral bodies. Z Orthop Ihre Grenzgeb 110(2):159–166PubMed
33.
go back to reference Reinhold M, Schmid R, Knop C, Blauth M (2004) Komplikationsspektrum operativ versorgter Wirbelsäulenverletzungen—Eine Analyse der Multicenterstdien I und II der AG Wirbelsäule [Spectrum of complications involved in surgical management of spinal injuries—analysis of two multicenter studies]. Trauma und Berufskrankheit Reinhold M, Schmid R, Knop C, Blauth M (2004) Komplikationsspektrum operativ versorgter Wirbelsäulenverletzungen—Eine Analyse der Multicenterstdien I und II der AG Wirbelsäule [Spectrum of complications involved in surgical management of spinal injuries—analysis of two multicenter studies]. Trauma und Berufskrankheit
35.
36.
go back to reference Rohlmann A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ (2001) Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 44(8):781–794. doi:10.1080/00140130110047657 CrossRef Rohlmann A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ (2001) Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 44(8):781–794. doi:10.​1080/​0014013011004765​7 CrossRef
39.
go back to reference Schultz AB, Andersson GB, Örtengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine: validation of a biomechanical analysis by measurements of intradiscal pressure and myoelectric signals. J Bone Joint Surg Am 64:713–720PubMed Schultz AB, Andersson GB, Örtengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine: validation of a biomechanical analysis by measurements of intradiscal pressure and myoelectric signals. J Bone Joint Surg Am 64:713–720PubMed
40.
go back to reference Stoltze D, Harms J (1999) Correction of posttraumatic deformities: principles and methods. Orthopade 28(8):731–745PubMedCrossRef Stoltze D, Harms J (1999) Correction of posttraumatic deformities: principles and methods. Orthopade 28(8):731–745PubMedCrossRef
41.
go back to reference von Gumppenberg S, Vieweg J, Claudi B, Harms J (1991) Primary management of fresh injuries of the thoracic and lumbar vertebrae. Aktuelle Traumatol 21(6):265–273 von Gumppenberg S, Vieweg J, Claudi B, Harms J (1991) Primary management of fresh injuries of the thoracic and lumbar vertebrae. Aktuelle Traumatol 21(6):265–273
42.
go back to reference Whitesides TE (1977) Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 128:78–92 Whitesides TE (1977) Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 128:78–92
45.
go back to reference Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154. doi:10.1007/s005860050045 PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154. doi:10.​1007/​s005860050045 PubMedCrossRef
46.
49.
go back to reference Wolfinbarger L Jr, Zhang Y, Adam BL, Sutherland V, Gates K, Brame B (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery: II. Mechanical properties and correlation with physical parameters. Spine 19(3):284–295PubMedCrossRef Wolfinbarger L Jr, Zhang Y, Adam BL, Sutherland V, Gates K, Brame B (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery: II. Mechanical properties and correlation with physical parameters. Spine 19(3):284–295PubMedCrossRef
Metadata
Title
A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine
Authors
M. Reinhold
W. Schmoelz
F. Canto
D. Krappinger
M. Blauth
Christian Knop
Publication date
01-10-2009
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 10/2009
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-009-0823-y

Other articles of this Issue 10/2009

Archives of Orthopaedic and Trauma Surgery 10/2009 Go to the issue