Skip to main content
Top
Published in: Comparative Clinical Pathology 4/2019

01-08-2019 | Review Article

Biomaterials, substitutes, and tissue engineering in bone repair: current and future concepts

Authors: Hamidreza Fattahian, Kimia Mansouri, Nikta Mansouri

Published in: Comparative Clinical Pathology | Issue 4/2019

Login to get access

Abstract

Bone is a complex, constantly changing organ comprised of mineralized hard tissue. This important structural component of vertebrate’s body serves a variety of functions. Healthy bone system is essential for lifelong execution of these functions. Millions of people worldwide suffer from bone defects due to various reasons, including trauma, tumor, bone diseases, congenital defects, and aging. These defects are increasingly becoming the majority of the clinical cases in orthopedics. For all the aforementioned cases in which the normal process of bone regeneration is either impaired or simply insufficient, there are currently a number of treatment methods available which can be used either alone or in combination for the enhancement of bone healing and regeneration. Accordingly, bone repair has been the focus of many research activities related to clinical therapies. The traditional bone repair procedure widely used in current era involves the use of bone-grafting methods such as autografts, allografts, and xenografts; however, these methods are associated with number of limitations. Therefore, to overcome these problems, tissue engineering as a new and developing option had been introduced recently. In order to provide ideal bone substitutes, a wide range of biomaterials and synthetic bone substitutes are available depending on the goal, each has advantages and disadvantages. The combined use of different bone substitutes together with healing promotive factors, stem cells, gene therapy, and more recently, three-dimensional printing of tissue-engineered constructs may open new insights in bone regeneration in near future. In this review, we describe developments and recognized properties of some of the most utilized materials in bone regenerative medicine heretofore. It may be concluded that presently strong requirements are still to be met in the repair and regeneration of bone defects.
Literature
go back to reference Alsousou J, Thompson M, Hulley P, Noble A, Willett K (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br 91(8):987–996CrossRefPubMed Alsousou J, Thompson M, Hulley P, Noble A, Willett K (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br 91(8):987–996CrossRefPubMed
go back to reference Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F et al (2015) Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 6:289CrossRefPubMedPubMedCentral Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F et al (2015) Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 6:289CrossRefPubMedPubMedCentral
go back to reference Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W (2013) Adipose-derived mesenchymal cells for bone regereneration: state of the art. Biomed Res Int 2013:416391CrossRefPubMedPubMedCentral Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W (2013) Adipose-derived mesenchymal cells for bone regereneration: state of the art. Biomed Res Int 2013:416391CrossRefPubMedPubMedCentral
go back to reference Barnes K, Lanz O, Werre S, Clapp K, Gilley R (2015) Comparison of autogenous cancellous bone grafting and extracorporeal shock wave therapy on osteotomy healing in the tibial tuberosity advancement procedure in dogs. Radiographic densitometric evaluation. Vet Comp Orthop Traumatol 28(3):207–214CrossRefPubMed Barnes K, Lanz O, Werre S, Clapp K, Gilley R (2015) Comparison of autogenous cancellous bone grafting and extracorporeal shock wave therapy on osteotomy healing in the tibial tuberosity advancement procedure in dogs. Radiographic densitometric evaluation. Vet Comp Orthop Traumatol 28(3):207–214CrossRefPubMed
go back to reference Buckwalter JA, Cooper RR (1987) Bone structure and function. Instr Course Lect 36:2748 Buckwalter JA, Cooper RR (1987) Bone structure and function. Instr Course Lect 36:2748
go back to reference Cadman J, Zhou S, Chen Y, Li Q (2012) Cuttlebone: characterisation, application and development of biomimetic materials. J Bionic Eng 9(3):367–376CrossRef Cadman J, Zhou S, Chen Y, Li Q (2012) Cuttlebone: characterisation, application and development of biomimetic materials. J Bionic Eng 9(3):367–376CrossRef
go back to reference Calori GM, D'Avino M, Tagliabue L, Albisetti W, d'Imporzano M, Peretti G (2006) An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results. Injury 37(Suppl 3):S43–S50CrossRefPubMed Calori GM, D'Avino M, Tagliabue L, Albisetti W, d'Imporzano M, Peretti G (2006) An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results. Injury 37(Suppl 3):S43–S50CrossRefPubMed
go back to reference Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G et al (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461CrossRefPubMedPubMedCentral Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G et al (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461CrossRefPubMedPubMedCentral
go back to reference Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW (2014) Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol 41(1):86–93CrossRefPubMed Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW (2014) Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol 41(1):86–93CrossRefPubMed
go back to reference Chen YC, Chen RN, Jhan HJ, Liu DZ, Ho HO, Mao Y et al (2015) Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Eng Part C Methods 21(9):971–986CrossRefPubMedPubMedCentral Chen YC, Chen RN, Jhan HJ, Liu DZ, Ho HO, Mao Y et al (2015) Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Eng Part C Methods 21(9):971–986CrossRefPubMedPubMedCentral
go back to reference Chen G, Yang L, Lv Y (2016) Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A 104(4):833–841CrossRefPubMed Chen G, Yang L, Lv Y (2016) Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A 104(4):833–841CrossRefPubMed
go back to reference Chou CH, Chen YG, Lin CC, Lin SM, Yang KC, Chang SH (2014) Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study. Tissue Eng Part A 20(17–18):2493–2502CrossRefPubMed Chou CH, Chen YG, Lin CC, Lin SM, Yang KC, Chang SH (2014) Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study. Tissue Eng Part A 20(17–18):2493–2502CrossRefPubMed
go back to reference Civinini R, Macera A, Nistri L, Redl B, Innocenti M (2011) The use of autologous blood-derived growth factors in bone regeneration. Clin Cases Miner Bone Metab 8(1):25–31PubMedPubMedCentral Civinini R, Macera A, Nistri L, Redl B, Innocenti M (2011) The use of autologous blood-derived growth factors in bone regeneration. Clin Cases Miner Bone Metab 8(1):25–31PubMedPubMedCentral
go back to reference Clarke SA, Walsh P, Maggs CA, Buchanan F (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29(6):610–617CrossRefPubMed Clarke SA, Walsh P, Maggs CA, Buchanan F (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29(6):610–617CrossRefPubMed
go back to reference Cray J Jr, Henderson SE, Smith DM, Kinsella CR Jr, Bykowski M, Cooper GM et al (2014) BMP-2-regenerated calvarial bone: a biomechanical appraisal in a large animal model. Ann Plast Surg 73(5):591–597CrossRefPubMed Cray J Jr, Henderson SE, Smith DM, Kinsella CR Jr, Bykowski M, Cooper GM et al (2014) BMP-2-regenerated calvarial bone: a biomechanical appraisal in a large animal model. Ann Plast Surg 73(5):591–597CrossRefPubMed
go back to reference De Baat P, Heijboer MP, De Baat C (2005) Development, physiology, and cell activity of bone. Ned Tijdschr Tandheelkd 112(7):258–263PubMed De Baat P, Heijboer MP, De Baat C (2005) Development, physiology, and cell activity of bone. Ned Tijdschr Tandheelkd 112(7):258–263PubMed
go back to reference Denny HR, Butterworth SJ (2000) A guide to canine and feline orthopaedic surgery, 4th edn. Blackwell, AustraliaCrossRef Denny HR, Butterworth SJ (2000) A guide to canine and feline orthopaedic surgery, 4th edn. Blackwell, AustraliaCrossRef
go back to reference Dewi AH, Ana ID, Wolke J, Jansen J (2015) Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat. J Biomed Mater Res A 103(10):3273–3283CrossRefPubMed Dewi AH, Ana ID, Wolke J, Jansen J (2015) Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat. J Biomed Mater Res A 103(10):3273–3283CrossRefPubMed
go back to reference Dogan E, Okumus Z (2014) Cuttlebone used as a bone xenograft in bone healing. Vet Med (Praha) 59(5):254–260CrossRef Dogan E, Okumus Z (2014) Cuttlebone used as a bone xenograft in bone healing. Vet Med (Praha) 59(5):254–260CrossRef
go back to reference Dong J, Mo X, Li Y, Chen D (2012) Recent research progress of decellularization of native tissues. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29(5):1007–1013PubMed Dong J, Mo X, Li Y, Chen D (2012) Recent research progress of decellularization of native tissues. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29(5):1007–1013PubMed
go back to reference DurmuŞlar MC, Alpaslan C, Alpaslan G, Çakır M (2014) Clinical and radiographic evaluation of the efficacy of plateletrich plasma combined with hydroxyapatite bone graft substitutes in the treatment of intrabony defects in maxillofacial region. Acta Odontol Scand 72(8):948–953CrossRefPubMed DurmuŞlar MC, Alpaslan C, Alpaslan G, Çakır M (2014) Clinical and radiographic evaluation of the efficacy of plateletrich plasma combined with hydroxyapatite bone graft substitutes in the treatment of intrabony defects in maxillofacial region. Acta Odontol Scand 72(8):948–953CrossRefPubMed
go back to reference EL Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F et al (2014) Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite/β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg 42(5):e70–e79CrossRefPubMed EL Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F et al (2014) Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite/β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg 42(5):e70–e79CrossRefPubMed
go back to reference Farahani F, Fattahian HR, Kajbafzadeh AM (2015) Experimental study on ostrich dermal acellular matrix in repair of full thickness wounds of guinea pig. Kafkas Univ Vet Fak 21(5):697 Farahani F, Fattahian HR, Kajbafzadeh AM (2015) Experimental study on ostrich dermal acellular matrix in repair of full thickness wounds of guinea pig. Kafkas Univ Vet Fak 21(5):697
go back to reference Farnebo S, Woon CY, Bronstein JA, Schmitt T, Lindsey DP, Pham H et al (2014 Jan) Decellularized tendon-bone composite grafts for extremity reconstruction: an experimental study. Plast Reconstr Surg 133(1):79–89CrossRefPubMed Farnebo S, Woon CY, Bronstein JA, Schmitt T, Lindsey DP, Pham H et al (2014 Jan) Decellularized tendon-bone composite grafts for extremity reconstruction: an experimental study. Plast Reconstr Surg 133(1):79–89CrossRefPubMed
go back to reference Fatourehchi M, Fattahian HR, Kajbafzadeh AM (2015) The experimental study of bio-engineered free-cell ostrich cornea as xenograft. Comp Pathobiol. Comp pathbiol 12(2) Fatourehchi M, Fattahian HR, Kajbafzadeh AM (2015) The experimental study of bio-engineered free-cell ostrich cornea as xenograft. Comp Pathobiol. Comp pathbiol 12(2)
go back to reference Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K et al (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595CrossRefPubMed Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K et al (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595CrossRefPubMed
go back to reference Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett 38(2):203–211CrossRefPubMed Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett 38(2):203–211CrossRefPubMed
go back to reference Gao Z, Mao TQ, Chen FL, He LS, Hou R, Yang YW et al (2007) The preparation of series of controllable degredation coral-hydroxyapatite (SCHA-200R) and the on its application as the scaffold in bone tissue-engineering. Zhonghua Zheng Xing Wai Ke Za Zhi 23(3):236–240PubMed Gao Z, Mao TQ, Chen FL, He LS, Hou R, Yang YW et al (2007) The preparation of series of controllable degredation coral-hydroxyapatite (SCHA-200R) and the on its application as the scaffold in bone tissue-engineering. Zhonghua Zheng Xing Wai Ke Za Zhi 23(3):236–240PubMed
go back to reference Gomez-Barrena E, Rosset P, Muller I, Giordano R, Bunu C, Layrolle P et al (2011) Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 15(6):1266–1286CrossRefPubMedPubMedCentral Gomez-Barrena E, Rosset P, Muller I, Giordano R, Bunu C, Layrolle P et al (2011) Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 15(6):1266–1286CrossRefPubMedPubMedCentral
go back to reference Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F (2015) Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 70:93–101CrossRefPubMed Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F (2015) Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 70:93–101CrossRefPubMed
go back to reference Hakimi M, Jungbluth P, Sager M, Betsch M, Herten M, Becker J et al (2010) Combined use of plateletrich plasma and autologous bone grafts in the treatment of long bone defects in minipigs. Injury 41(7):71723CrossRef Hakimi M, Jungbluth P, Sager M, Betsch M, Herten M, Becker J et al (2010) Combined use of plateletrich plasma and autologous bone grafts in the treatment of long bone defects in minipigs. Injury 41(7):71723CrossRef
go back to reference Hannouche D, Petite H, Sedel L (2001) Current trends in the enhancement of fracture healing. J Bone Joint Surg Br 83(2):157–164CrossRefPubMed Hannouche D, Petite H, Sedel L (2001) Current trends in the enhancement of fracture healing. J Bone Joint Surg Br 83(2):157–164CrossRefPubMed
go back to reference Harwood PJ, Giannoudis PV (2005) Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf 4(1):75–89CrossRefPubMed Harwood PJ, Giannoudis PV (2005) Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf 4(1):75–89CrossRefPubMed
go back to reference Hayakawa S, Kanaya T, Tsuru K, Shirosaki Y, Osaka A, Fujii E et al (2013) Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater 9(1):4856–4867CrossRefPubMed Hayakawa S, Kanaya T, Tsuru K, Shirosaki Y, Osaka A, Fujii E et al (2013) Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater 9(1):4856–4867CrossRefPubMed
go back to reference Heyde M, Partridge KA, Oreffo RO, Howdle SM, Shakesheff KM, Garnett MC (2007) Gene therapy used for tissue engineering applications. J Pharm Pharmacol 59(3):329–350CrossRefPubMed Heyde M, Partridge KA, Oreffo RO, Howdle SM, Shakesheff KM, Garnett MC (2007) Gene therapy used for tissue engineering applications. J Pharm Pharmacol 59(3):329–350CrossRefPubMed
go back to reference Hongmin L, Wei Z, Xingrong Y, Jing W, Wenxin G, Jihong C et al (2015) Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J Biomed Mater Res B Appl Biomater 103(4):816–824CrossRefPubMed Hongmin L, Wei Z, Xingrong Y, Jing W, Wenxin G, Jihong C et al (2015) Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J Biomed Mater Res B Appl Biomater 103(4):816–824CrossRefPubMed
go back to reference Hoyer B, Bernhardt A, Heinemann S, Stachel A, Meyer M, Gelinsky M (2012) Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 13(4):1059–1066CrossRefPubMed Hoyer B, Bernhardt A, Heinemann S, Stachel A, Meyer M, Gelinsky M (2012) Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 13(4):1059–1066CrossRefPubMed
go back to reference Hu J, Yang Z, Zhou Y, Liu Y, Li K, Lu H (2015) Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J Mater Sci Mater Med 26(11):257CrossRefPubMed Hu J, Yang Z, Zhou Y, Liu Y, Li K, Lu H (2015) Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J Mater Sci Mater Med 26(11):257CrossRefPubMed
go back to reference Ivankovic H, Gallego Ferrer G, Tkalcec E, Orlic S, Ivankovic M (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20(5):1039–1046CrossRefPubMed Ivankovic H, Gallego Ferrer G, Tkalcec E, Orlic S, Ivankovic M (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20(5):1039–1046CrossRefPubMed
go back to reference Ivankovic H, Tkalcec E, Orlic S, Ferrer GG, Schauperl Z (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci Mater Med 21(10):2711–2722CrossRefPubMed Ivankovic H, Tkalcec E, Orlic S, Ferrer GG, Schauperl Z (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci Mater Med 21(10):2711–2722CrossRefPubMed
go back to reference Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14CrossRefPubMed Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14CrossRefPubMed
go back to reference Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK et al (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord 10:20CrossRefPubMedPubMedCentral Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK et al (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord 10:20CrossRefPubMedPubMedCentral
go back to reference Kim BS, Kim JS, Sung HM, You HK, Lee J (2012) Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res A 100(7):1673–1679CrossRefPubMed Kim BS, Kim JS, Sung HM, You HK, Lee J (2012) Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res A 100(7):1673–1679CrossRefPubMed
go back to reference Kim BS, Kang HJ, Lee J (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B Appl Biomater 101(7):1302–1309CrossRefPubMed Kim BS, Kang HJ, Lee J (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B Appl Biomater 101(7):1302–1309CrossRefPubMed
go back to reference Kim BS, Yang SS, Lee J (2014) A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(5):943–951CrossRefPubMed Kim BS, Yang SS, Lee J (2014) A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(5):943–951CrossRefPubMed
go back to reference Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 73(8):1305–1317CrossRefPubMed Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 73(8):1305–1317CrossRefPubMed
go back to reference Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle) 2(6):306–316CrossRef Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle) 2(6):306–316CrossRef
go back to reference Kraus KH (2012) Bone grafts and substitutes. In: Tobias KM, Johnston SA (eds) Veterinary surgery: small animal. Saunders, Canada, pp 676–684 Kraus KH (2012) Bone grafts and substitutes. In: Tobias KM, Johnston SA (eds) Veterinary surgery: small animal. Saunders, Canada, pp 676–684
go back to reference Liao X, Lu S, Zhou Y, Winter C, Xu W, Li B et al (2011) Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on MSC osteogenesis. Cell Mol Bioeng 4(4):579–590CrossRefPubMed Liao X, Lu S, Zhou Y, Winter C, Xu W, Li B et al (2011) Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on MSC osteogenesis. Cell Mol Bioeng 4(4):579–590CrossRefPubMed
go back to reference Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC (2013) Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med. doi:10.1002/term.1811 Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC (2013) Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med. doi:10.​1002/​term.​1811
go back to reference Liu Y, Yu J, Bai J, Gu JS, Cai B, Zhou X (2013) Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats. Zhonghua Shao Shang Za Zhi 29(6):54853 Liu Y, Yu J, Bai J, Gu JS, Cai B, Zhou X (2013) Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats. Zhonghua Shao Shang Za Zhi 29(6):54853
go back to reference Ma C, Jing Y, Sun H, Liu X (2015) Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv Healthc Mater 4(17):2699–2708CrossRefPubMedPubMedCentral Ma C, Jing Y, Sun H, Liu X (2015) Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv Healthc Mater 4(17):2699–2708CrossRefPubMedPubMedCentral
go back to reference Marcucio RS, Nauth A, Giannoudis PV, Bahney C, Piuzzi NS, Muschler G et al (2015) Stem cell therapies in orthopaedic trauma. J Orthop Trauma 29(Suppl 12):S24–S27CrossRefPubMedPubMedCentral Marcucio RS, Nauth A, Giannoudis PV, Bahney C, Piuzzi NS, Muschler G et al (2015) Stem cell therapies in orthopaedic trauma. J Orthop Trauma 29(Suppl 12):S24–S27CrossRefPubMedPubMedCentral
go back to reference McMahon RE, Wang L, Skoracki R, Mathur AB (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101(2):387–397CrossRefPubMed McMahon RE, Wang L, Skoracki R, Mathur AB (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101(2):387–397CrossRefPubMed
go back to reference Millis DL, Martinez SA (2003) Bone Grafts. In: Douglas S (ed) Textbook of small animal surgery, 3th edn. Saunders, United States of America, pp 1875–1891 Millis DL, Martinez SA (2003) Bone Grafts. In: Douglas S (ed) Textbook of small animal surgery, 3th edn. Saunders, United States of America, pp 1875–1891
go back to reference Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. Adv Exp Med Biol 881:95–110CrossRefPubMed Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. Adv Exp Med Biol 881:95–110CrossRefPubMed
go back to reference Neves PC, Abib Sde C, Neves RF, Pircchio O, Saad KR, Saad PF et al (2013) Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing. Clinics (Sao Paulo) 68(9):1239–1246CrossRef Neves PC, Abib Sde C, Neves RF, Pircchio O, Saad KR, Saad PF et al (2013) Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing. Clinics (Sao Paulo) 68(9):1239–1246CrossRef
go back to reference Ni M, Ratner BD (2003) Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials 24(23):4323–4331CrossRefPubMed Ni M, Ratner BD (2003) Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials 24(23):4323–4331CrossRefPubMed
go back to reference Oryan A, Alidadi S, Moshiri A, Maffulli N (2014a) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18CrossRefPubMedPubMedCentral Oryan A, Alidadi S, Moshiri A, Maffulli N (2014a) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18CrossRefPubMedPubMedCentral
go back to reference Oryan A, Alidadi S, Moshiri A, Maffulli N (2014b) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18CrossRefPubMedPubMedCentral Oryan A, Alidadi S, Moshiri A, Maffulli N (2014b) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18CrossRefPubMedPubMedCentral
go back to reference Parrilla C, Saulnier N, Bernardini C, Patti R, Tartaglione T, Fetoni AR et al (2011) Undifferentiated human adipose tissue-derived stromal cells induce mandibular bone healing in rats. Arch Otolaryngol Head Neck Surg 137(5):463–470CrossRefPubMed Parrilla C, Saulnier N, Bernardini C, Patti R, Tartaglione T, Fetoni AR et al (2011) Undifferentiated human adipose tissue-derived stromal cells induce mandibular bone healing in rats. Arch Otolaryngol Head Neck Surg 137(5):463–470CrossRefPubMed
go back to reference Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R et al (2008) Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma 22(9):595–604CrossRefPubMed Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R et al (2008) Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma 22(9):595–604CrossRefPubMed
go back to reference Pati F, Datta P, Adhikari B, Dhara S, Ghosh K, Das Mohapatra PK (2012) Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J Biomed Mater Res A 100(4):1068–1079CrossRefPubMed Pati F, Datta P, Adhikari B, Dhara S, Ghosh K, Das Mohapatra PK (2012) Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J Biomed Mater Res A 100(4):1068–1079CrossRefPubMed
go back to reference Piermattei DL, Flo G, Decamp CH (2006) Handbook of small animal orthopaedics and fracture repair. 4th ed. United States of America: Saunders. Chapter 3. Bone grafting; p.160 Piermattei DL, Flo G, Decamp CH (2006) Handbook of small animal orthopaedics and fracture repair. 4th ed. United States of America: Saunders. Chapter 3. Bone grafting; p.160
go back to reference Poth N, Seiffart V, Gross G, Menzel H, Dempwolf W (2015) Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomol Ther 5(1):3–19 Poth N, Seiffart V, Gross G, Menzel H, Dempwolf W (2015) Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomol Ther 5(1):3–19
go back to reference Quan TM, Vu DN, Ha TLB (2014) Decellularization of xenogenic bone grafts for potential use as tissue engineering scaffolds. JJLSR 4(4):38–46 Quan TM, Vu DN, Ha TLB (2014) Decellularization of xenogenic bone grafts for potential use as tissue engineering scaffolds. JJLSR 4(4):38–46
go back to reference Rai R, Raval R, Khandeparker RV, Chidrawar SK, Khan AA, Ganpat MS (2015) Tissue engineering: step ahead in maxillofacial reconstruction. J Int Oral Health 7(9):138–142PubMedPubMedCentral Rai R, Raval R, Khandeparker RV, Chidrawar SK, Khan AA, Ganpat MS (2015) Tissue engineering: step ahead in maxillofacial reconstruction. J Int Oral Health 7(9):138–142PubMedPubMedCentral
go back to reference Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R, Saldana-Koppel DA, Quinones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279CrossRefPubMedPubMedCentral Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R, Saldana-Koppel DA, Quinones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279CrossRefPubMedPubMedCentral
go back to reference Roffi A, Filardo G, Kon E, Marcacci M (2013) Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord 14:330CrossRefPubMedPubMedCentral Roffi A, Filardo G, Kon E, Marcacci M (2013) Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord 14:330CrossRefPubMedPubMedCentral
go back to reference Saadinam F, Fattahian HR, Kajbafzadeh AM (2014) Meniscal lesions and their healing: new aspects. Comp clin pathol Saadinam F, Fattahian HR, Kajbafzadeh AM (2014) Meniscal lesions and their healing: new aspects. Comp clin pathol
go back to reference Salamanna F, Veronesi F, Maglio M, Della Bella E, Sartori M, Fini M (2015) New and emerging strategies in platelet rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. Biomed Res Int 2015:846045CrossRefPubMedPubMedCentral Salamanna F, Veronesi F, Maglio M, Della Bella E, Sartori M, Fini M (2015) New and emerging strategies in platelet rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. Biomed Res Int 2015:846045CrossRefPubMedPubMedCentral
go back to reference Santo VE, Duarte AR, Popa EG, Gomes ME, Mano JF, Reis RL (2012) Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release 162(1):19–27CrossRefPubMed Santo VE, Duarte AR, Popa EG, Gomes ME, Mano JF, Reis RL (2012) Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release 162(1):19–27CrossRefPubMed
go back to reference Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST (2009) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 10(1):19–26CrossRefPubMed Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST (2009) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 10(1):19–26CrossRefPubMed
go back to reference Silva TH, Silva JM, Marques ALP, Domingues A, Bayon Y, Reis RL (2014) Marine origin collagens and its potential applications. Mar Drugs 12(12):5881–5901CrossRefPubMedPubMedCentral Silva TH, Silva JM, Marques ALP, Domingues A, Bayon Y, Reis RL (2014) Marine origin collagens and its potential applications. Mar Drugs 12(12):5881–5901CrossRefPubMedPubMedCentral
go back to reference Subbiah R, Hwang MP, Van SY, Do SH, Park H, Lee K et al (2015) Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater 4(13):1982–1992CrossRefPubMed Subbiah R, Hwang MP, Van SY, Do SH, Park H, Lee K et al (2015) Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater 4(13):1982–1992CrossRefPubMed
go back to reference Taniyama T, Masaoka T, Yamada T, Wei X, Yasuda H, Yoshii T et al (2015) Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 39(6):529–535CrossRefPubMed Taniyama T, Masaoka T, Yamada T, Wei X, Yasuda H, Yoshii T et al (2015) Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 39(6):529–535CrossRefPubMed
go back to reference Tkalčec E, Popović J, Orlić S, Milardović S, Ivanković H (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C Mater Biol Appl 42:578–586CrossRefPubMed Tkalčec E, Popović J, Orlić S, Milardović S, Ivanković H (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C Mater Biol Appl 42:578–586CrossRefPubMed
go back to reference Venkatesan J, Vinodhini PA, Sudha PN, Kim SK (2014) Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res 73:59–81CrossRefPubMed Venkatesan J, Vinodhini PA, Sudha PN, Kim SK (2014) Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res 73:59–81CrossRefPubMed
go back to reference Wang Q, Gu Z, Jamal S, Detamore MS, Berkland C (2013) Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng A 19(23–24):2586–2593CrossRef Wang Q, Gu Z, Jamal S, Detamore MS, Berkland C (2013) Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng A 19(23–24):2586–2593CrossRef
go back to reference Xu FT, Li HM, Yin QS, Liang ZJ, Huang MH, Chi GY et al (2015) Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro. Am J Transl Res 7(2):257–270PubMedPubMedCentral Xu FT, Li HM, Yin QS, Liang ZJ, Huang MH, Chi GY et al (2015) Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro. Am J Transl Res 7(2):257–270PubMedPubMedCentral
go back to reference Xuan Y, Tang H, Wu B, Ding X, Lu Z, Li W et al (2014) A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J Biomed Mater Res A 102(10):3401–3408CrossRefPubMed Xuan Y, Tang H, Wu B, Ding X, Lu Z, Li W et al (2014) A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J Biomed Mater Res A 102(10):3401–3408CrossRefPubMed
go back to reference Yamamoto K, Igawa K, Sugimoto K, Yoshizawa Y, Yanagiguchi K, Ikeda T et al (2014) Biological safety of fish (tilapia) collagen. Biomed Res Int 2014:630757PubMedPubMedCentral Yamamoto K, Igawa K, Sugimoto K, Yoshizawa Y, Yanagiguchi K, Ikeda T et al (2014) Biological safety of fish (tilapia) collagen. Biomed Res Int 2014:630757PubMedPubMedCentral
go back to reference Yi HC, Tang LH, Zhang XP (2011) Experimental study on bone defect treated by combined autologous bone marrow transplantation, cuttlebone, and sodium hyaluronate. Zhongguo Zhong Xi Yi Jie He Za Zhi 31(8):11226 Yi HC, Tang LH, Zhang XP (2011) Experimental study on bone defect treated by combined autologous bone marrow transplantation, cuttlebone, and sodium hyaluronate. Zhongguo Zhong Xi Yi Jie He Za Zhi 31(8):11226
go back to reference Zeng C, Xiao J, Wu Z, Huang W (2015) Evaluation of three-dimensional printing for internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach: a preliminary report. Int J Clin Exp Med 8(8):13039–13044PubMedPubMedCentral Zeng C, Xiao J, Wu Z, Huang W (2015) Evaluation of three-dimensional printing for internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach: a preliminary report. Int J Clin Exp Med 8(8):13039–13044PubMedPubMedCentral
go back to reference Zhang X, Zhang Y (2015) Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys Zhang X, Zhang Y (2015) Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys
go back to reference Zhao SF, Jiang QH, Peel S, Wang XX, He FM (2013) Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res 24(Suppl A100):34–41CrossRefPubMed Zhao SF, Jiang QH, Peel S, Wang XX, He FM (2013) Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res 24(Suppl A100):34–41CrossRefPubMed
go back to reference Zhao HY, Wu J, Zhu JJ, Xiao ZC, He CC, Shi HX et al (2015) Research advances in tissue engineering materials for sustained release of growth factors. Biomed Res Int 2015:808202PubMedPubMedCentral Zhao HY, Wu J, Zhu JJ, Xiao ZC, He CC, Shi HX et al (2015) Research advances in tissue engineering materials for sustained release of growth factors. Biomed Res Int 2015:808202PubMedPubMedCentral
go back to reference Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A (2015) Recent advances in bone regeneration using adult stem cells. World J Stem Cells 7(3):630–640CrossRefPubMedPubMedCentral Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A (2015) Recent advances in bone regeneration using adult stem cells. World J Stem Cells 7(3):630–640CrossRefPubMedPubMedCentral
Metadata
Title
Biomaterials, substitutes, and tissue engineering in bone repair: current and future concepts
Authors
Hamidreza Fattahian
Kimia Mansouri
Nikta Mansouri
Publication date
01-08-2019
Publisher
Springer London
Published in
Comparative Clinical Pathology / Issue 4/2019
Print ISSN: 1618-5641
Electronic ISSN: 1618-565X
DOI
https://doi.org/10.1007/s00580-017-2507-2

Other articles of this Issue 4/2019

Comparative Clinical Pathology 4/2019 Go to the issue