Skip to main content

Advertisement

Log in

Bone Physiology, Biomaterial and the Effect of Mechanical/Physical Microenvironment on Mesenchymal Stem Cell Osteogenesis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In this review, we summarize the research progress in understanding the physiology of bone cells interacting with different mechanical/physical environments during bone tissue regeneration/repair. We first introduce the cellular composition of the bone tissue and the mechanism of the physiological bone regeneration/repair process. We then describe the properties and development of biomaterials for bone tissue engineering, followed by the highlighting of research progresses on the cellular response to mechanical environmental cues. Finally, several latest advancements in bone tissue regeneration and remaining challenges in the field are discussed for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55(2):141–150, 2001.

    Article  Google Scholar 

  2. Albright, F. The effect of hormones on osteogenesis in man. Recent Prog. Horm. Res. 1:293–353, 1947.

    Google Scholar 

  3. Bacabac, R. G., et al. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 315(4):823–829, 2004.

    Article  Google Scholar 

  4. Bakker, A. D., et al. Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos. Int. 17(6):827–833, 2006.

    Article  Google Scholar 

  5. Blecha, L. D., L. Rakotomanana, F. Razafimahery, A. Terrier, and D. P. Pioletti. Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes. J. Orthopaed. Res. 27:1082–1087, 2009.

    Article  Google Scholar 

  6. Blecha, L. D., et al. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress. J. Biomech. 43(5):933–937, 2010.

    Article  Google Scholar 

  7. Boyce, B. F., Z. Yao, and L. Xing. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr. 19(3):171–180, 2009.

    Google Scholar 

  8. Buenzli, P. R., P. Pivonka, and D. W. Smith. Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone 48(4):918–926, 2011.

    Article  Google Scholar 

  9. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9(5):641–650, 1991.

    Article  Google Scholar 

  10. Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2):341–347, 2007.

    Article  MathSciNet  Google Scholar 

  11. Caplan, A. I. New era of cell-based orthopedic therapies. Tissue Eng. B Rev. 15(2):195–200, 2009.

    Article  Google Scholar 

  12. Celil Aydemir, A. B., et al. Nuclear factor of activated T cells mediates fluid shear stress- and tensile strain-induced Cox2 in human and murine bone cells. Bone 46(1):167–175, 2010.

    Article  Google Scholar 

  13. Chappard, D., et al. Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 41(4):321–326, 2010.

    Article  Google Scholar 

  14. Christoph, R., et al. In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives. Head Face Med. 5(23):1–9, 2009.

    Google Scholar 

  15. Deng, Z. L., et al. Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13:2001–2021, 2008.

    Article  Google Scholar 

  16. Deschaseaux, F., L. Sensebe, and D. Heymann. Mechanisms of bone repair and regeneration. Trends Mol. Med. 15(9):417–429, 2009.

    Article  Google Scholar 

  17. Donahue, T. L., et al. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36(9):1363–1371, 2003.

    Article  Google Scholar 

  18. Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  Google Scholar 

  19. Faghihi, S., et al. The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials 27(19):3532–3539, 2006.

    Google Scholar 

  20. Franceschi, R. T., and G. Xiao. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88(3):446–454, 2003.

    Article  Google Scholar 

  21. Fu, H., et al. Osteoblast differentiation in vitro and in vivo promoted by Osterix. J. Biomed. Mater. Res. A 83(3):770–778, 2007.

    Google Scholar 

  22. Gao, J., and A. I. Caplan. Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir. Organ. Mov. 88(3):305–316, 2003.

    Google Scholar 

  23. Gazdag, A. R., et al. Alternatives to autogenous bone graft: efficacy and indications. J. Am. Acad. Orthop. Surg. 3(1):1–8, 1995.

    Google Scholar 

  24. Gersbach, C. A., J. E. Phillips, and A. J. Garcia. Genetic engineering for skeletal regenerative medicine. Annu. Rev. Biomed. Eng. 9:87–119, 2007.

    Article  Google Scholar 

  25. Gotz, H. E., et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25(18):4057–4064, 2004.

    Article  Google Scholar 

  26. Haasper, C., et al. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol. 59(6):355–363, 2008.

    Google Scholar 

  27. Hacking, S. A., et al. The response of mineralizing culture systems to microtextured and polished titanium surfaces. J. Orthop. Res. 26(10):1347–1354, 2008.

    Article  Google Scholar 

  28. Hallab, N. J., et al. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. J. Long Term Eff. Med. Implants 5(3):209–231, 1995.

    Google Scholar 

  29. Hatano, K., et al. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25(4):439–445, 1999.

    Article  Google Scholar 

  30. Hench, L. L. Biomaterials. Science 208(4446):826–831, 1980.

    Article  Google Scholar 

  31. Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295(5557):1014–1017, 2002.

    Article  Google Scholar 

  32. Hench, L. L., and I. Thompson. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 7(Suppl 4):S379–S391, 2010.

    Article  Google Scholar 

  33. Huang, W., et al. PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 31(15):4278–4285, 2010.

    Article  Google Scholar 

  34. Huber, F.-X., N. McArthur, L. Heimann, E. Dingeldein, H. Cavey, X. Palazzi , G. Clermont, and J.-P. Boutrand. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM®—more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®. BMC Musculoskeletal Disord. 10(164):1–11, 2009.

    Google Scholar 

  35. Huesa, C., M. H. Helfrich, and R. M. Aspden. Parallel-plate fluid flow systems for bone cell stimulation. J. Biomech. 43(6):1182–1189, 2010.

    Article  Google Scholar 

  36. Hulbert, S. F., et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4(3):433–456, 1970.

    Article  Google Scholar 

  37. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.

    Article  Google Scholar 

  38. Karsenty, G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4(5):341–348, 2006.

    Article  Google Scholar 

  39. Karsenty, G., and E. F. Wagner. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2(4):389–406, 2002.

    Article  Google Scholar 

  40. Kong, H. J., et al. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA. 102(12):4300–4305, 2005.

    Article  Google Scholar 

  41. Kong, H. J., et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat. Mater. 4(6):460–464, 2005.

    Article  Google Scholar 

  42. Kreke, M. R., W. R. Huckle, and A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36(6):1047–1055, 2005.

    Article  Google Scholar 

  43. Kuboki, Y., et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J. Biomed. Mater. Res. 39(2):190–199, 1998.

    Article  MathSciNet  Google Scholar 

  44. Kuczumow, A., et al. Investigation of chemical changes in bone material from South African fossil hominid deposits. J. Archaeol. Sci. 37:107–115, 2010.

    Google Scholar 

  45. Kujala, S., et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24(25):4691–4697, 2003.

    Article  Google Scholar 

  46. Kwon, R. Y., and C. R. Jacobs. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling. J. Biomech. 40(14):3162–3168, 2007.

    Article  Google Scholar 

  47. Laird, D. J., U. H. von Andrian, and A. J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell 132(4):612–630, 2008.

    Article  Google Scholar 

  48. Laurencin, C. T., et al. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1:19–46, 1999.

    Article  Google Scholar 

  49. Lazarus, H. M., et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow. Transplant. 11(5):389–398, 2005.

    Article  Google Scholar 

  50. Li, Y., et al. Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. J. Alloy. Compd. 494(1–2):323–329, 2010.

    Article  Google Scholar 

  51. Liu, L., W. Yuan, and J. Wang, Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 2010.

  52. Long, F. Bone Appétit!. Cell 139:1044–1045, 2009.

    Article  Google Scholar 

  53. Lutwak, L., F. R. Singer, and M. R. Urist. UCLA conference: current concepts of bone metabolism. Ann. Intern. Med. 80(5):630–644, 1974.

    Google Scholar 

  54. Martin, R. B. Toward a unifying theory of bone remodeling. Bone 26(1):1–6, 2000.

    Article  Google Scholar 

  55. Martin, I., et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55(2):229–235, 2001.

    Article  Google Scholar 

  56. Massberg, S., et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008, 2007.

    Article  Google Scholar 

  57. McGarry, J. G., et al. A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. Faseb J. 19(3):482–484, 2005.

    Google Scholar 

  58. Meyerrose, T., et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv. Drug Deliv. Rev. 62(12):1167–1174, 2010.

    Article  Google Scholar 

  59. Mourino, V., and A. R. Boccaccini. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J. R. Soc. Interface 7(43):209–227, 2010.

    Article  Google Scholar 

  60. Mullender, M. G., and R. Huiskes. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20(6):527–532, 1997.

    Article  Google Scholar 

  61. Mustafa, K., et al. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral. Implants Res. 12(5):515–525, 2001.

    Article  Google Scholar 

  62. Nakamura, T., et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823, 2007.

    Article  Google Scholar 

  63. Navarro, M., et al. Biomaterials in orthopaedics. J. R. Soc. Interface 5(27):1137–1158, 2008.

    Article  Google Scholar 

  64. Oberdorster, G., E. Oberdorster, and J. Oberdorster. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839, 2005.

    Article  Google Scholar 

  65. Ozcivici, E., et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6(1):50–59, 2010.

    Article  Google Scholar 

  66. Parekkadan, B., and J. M. Milwid. Mesenchymal stem cells as therapeutics. Annu. Rev. Biomed. Eng. 12:87–117, 2010.

    Article  Google Scholar 

  67. Partridge, K. A., and R. O. Oreffo. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng. 10(1–2):295–307, 2004.

    Article  Google Scholar 

  68. Pek, Y. S., A. C. Wan, and J. Y. Ying. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31(3):385–391, 2010.

    Article  Google Scholar 

  69. Pietras, K., et al. PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443, 2003.

    Article  Google Scholar 

  70. Puckett, S., R. Pareta, and T. J. Webster. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomed. 3(2):229–241, 2008.

    Google Scholar 

  71. Quarto, R., et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344(5):385–386, 2001.

    Article  Google Scholar 

  72. Ratner, B. D., and S. J. Bryant. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75, 2004.

    Article  Google Scholar 

  73. Ren, J., et al. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds. J. Biomater. Sci. Polym. Ed. 18(5):505–517, 2007.

    Article  Google Scholar 

  74. Rho, J. Y., L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2):92–102, 1998.

    Article  Google Scholar 

  75. Rimondini, L., and S. Mele. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol. 58(10):483–500, 2009.

    Google Scholar 

  76. Robling, A. G., A. B. Castillo, and C. H. Turner. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8:455–498, 2006.

    Article  Google Scholar 

  77. Rodan, G. A., and T. J. Martin. Therapeutic approaches to bone diseases. Science 289(5484):1508–1514, 2000.

    Article  Google Scholar 

  78. Ruardy, T. G., et al. Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Sci. Rep. 29(1):3–30, 1997.

    Article  Google Scholar 

  79. Rydziel, S., S. Shaikh, and E. Canalis. Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134(6):2541–2546, 1994.

    Article  Google Scholar 

  80. Sá, J. C., et al. Influence of argon-ion bombardment of titanium surfaces on the cell behavior. Surf. Coat. Technol. 203:1765–1770, 2009.

    Article  Google Scholar 

  81. Satija, N. K., et al. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 16(1):7–23, 2007.

    Article  Google Scholar 

  82. Satija, N. K., et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J. Cell. Mol. Med. 13(11–12):4385–4402, 2009.

    Article  Google Scholar 

  83. Schimming, R., and R. Schmelzeisen. Tissue-engineered bone for maxillary sinus augmentation. J. Oral Maxillofac. Surg. 62(6):724–729, 2004.

    Article  Google Scholar 

  84. Schneider, R. K., et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31:467–480, 2010.

    Article  Google Scholar 

  85. Schuler, M., et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials 27(21):4003–4015, 2006.

    Article  Google Scholar 

  86. Shi, X., et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28(28):4078–4090, 2007.

    Article  Google Scholar 

  87. Silva, G. A., et al. Materials in particulate form for tissue engineering. 2. Applications in bone. J. Tissue Eng. Regen. Med. 1(2):97–109, 2007.

    Article  Google Scholar 

  88. Smith, I. O., X. H. Liu, L. A. Smith, and P. X. Ma. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2):226–236, 2009.

    Google Scholar 

  89. Steinmuller-Nethl, D., et al. Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials 27(26):4547–4556, 2006.

    Article  Google Scholar 

  90. Teitelbaum, S. L., and F. P. Ross. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4(8):638–649, 2003.

    Article  Google Scholar 

  91. Tsai, S. W., F. Y. Hsu, and P. L. Chen. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4(5):1332–1341, 2008.

    Article  Google Scholar 

  92. Undale, A. H., et al. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 84(10):893–902, 2009.

    Article  Google Scholar 

  93. Urist, M. R. Bone: formation by autoinduction. Science 150(698):893–899, 1965.

    Article  Google Scholar 

  94. Vagaska, B., et al. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol. Res. 59(3):309–322, 2010.

    Google Scholar 

  95. Valonen, P. K., et al. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31(8):2193–2200, 2010.

    Article  Google Scholar 

  96. Vukicevic, S., and L. Grgurevic. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev. 20(5–6):441–448, 2009.

    Article  Google Scholar 

  97. Wang, Y., J. Y. Shyy, and S. Chien. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10:1–38, 2008.

    Article  MATH  Google Scholar 

  98. Wang, Y., et al. Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045, 2005.

    Article  Google Scholar 

  99. Watari, F., et al. Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J. R. Soc. Interface 6(Suppl 3):S371–S388, 2009.

    Article  Google Scholar 

  100. Webster, T. J. Nanophase ceramics: the future orthopdic and dental implant material. Adv. Chem. Eng. 27:125–166, 2001.

    Article  Google Scholar 

  101. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360, 1994.

    Article  Google Scholar 

  102. Wu, C., Y. Zhang, Y. Zhu, T. Friis, Y. Xiao. Structure-property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials 31:3429–3438, 2010.

    Google Scholar 

  103. Xu, H., S. F. Othman, and R. L. Magin. Monitoring tissue engineering using magnetic resonance imaging. J. Biosci. Bioeng. 106(6):515–527, 2008.

    Article  Google Scholar 

  104. Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610, 2007.

    Article  Google Scholar 

  105. Yao, C., D. Storey, and T. J. Webster. Nanostructured metal coatings on polymers increase osteoblast attachment. Int. J. Nanomed. 2(3):487–492, 2007.

    Google Scholar 

  106. Zhang, H., et al. Proteomics in bone research. Expert Rev Proteomics 7(1):103–111, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from NIH HL098472, NS063405, NSF CBET0846429 (Y.W.), and National Natural Foundation of China No. 81101154 (X.L., W.X. and B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiao Wang.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

X. Liao and S. Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, X., Lu, S., Zhuo, Y. et al. Bone Physiology, Biomaterial and the Effect of Mechanical/Physical Microenvironment on Mesenchymal Stem Cell Osteogenesis. Cel. Mol. Bioeng. 4, 579–590 (2011). https://doi.org/10.1007/s12195-011-0204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0204-9

Keywords

Navigation