Skip to main content
Top
Published in: Journal of Gastroenterology 4/2019

01-04-2019 | Original Article—Liver, Pancreas, and Biliary Tract

Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice

Authors: Yin Zhu, Cong He, Xueyang Li, Yan Cai, Jinxiang Hu, Yuanhang Liao, Jianhua Zhao, Liang Xia, Wenhua He, Linmeng Liu, Chun Luo, Xu Shu, Qiang Cai, Youxiang Chen, Nonghua Lu

Published in: Journal of Gastroenterology | Issue 4/2019

Login to get access

Abstract

Background

The gut is implicated in the pathogenesis of acute pancreatitis (AP) and the infectious complications of AP are commonly associated with enteric bacteria, yet whether gut microbiota dysbiosis participants in AP severity remains largely unknown.

Methods

We collected clinical information and fecal samples from 165 adult participants, including 41 with mild AP (MAP), 59 with moderately severe AP (MSAP), 30 with severe AP (SAP) and 35 healthy controls (HC). The serum inflammatory cytokines and gut barrier indexes were detected. Male C57BL/6 mice with AP were established and injuries of pancreas were evaluated in antibiotic-treated mice, germ-free mice as well as those transplanted with fecal microbiota. The gut microbiota was analyzed by 16S rRNA gene sequencing.

Results

The structure of gut microbiota was significantly different between AP and HC, and the disturbed microbiota was closely correlated with systematic inflammation and gut barrier dysfunction. Notably, the microbial composition changed further with the worsening of AP and the abundance of beneficial bacteria such as Blautia was decreased in SAP compared with MAP and MSAP. The increased capacity for the inferred pathway, bacterial invasion of epithelial cells in AP, highly correlated with the abundance of EscherichiaShigella. Furthermore, the antibiotic-treated mice and germ-free mice exhibited alleviated pancreatic injury after AP induction and subsequent fecal microbiota transplantation in turn exacerbated the disease.

Conclusions

This study identifies the gut microbiota as an important mediator during AP and its dysbiosis is associated with AP severity, which suggests its role as potential therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shah AU, Sarwar A, Orabi AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. Am J Physiol Gastrointest Liver Physiol. 2009;297:G967–73.CrossRefPubMedPubMedCentral Shah AU, Sarwar A, Orabi AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. Am J Physiol Gastrointest Liver Physiol. 2009;297:G967–73.CrossRefPubMedPubMedCentral
2.
go back to reference Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.CrossRefPubMed Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.CrossRefPubMed
3.
go back to reference Pezzilli R, Uomo G, Zerbi A, et al. Diagnosis and treatment of acute pancreatitis: the position statement of the Italian Association for the study of the pancreas. Dig Liver Dis. 2008;40:803–8.CrossRefPubMed Pezzilli R, Uomo G, Zerbi A, et al. Diagnosis and treatment of acute pancreatitis: the position statement of the Italian Association for the study of the pancreas. Dig Liver Dis. 2008;40:803–8.CrossRefPubMed
4.
go back to reference Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock. 2014;42:264–70.CrossRefPubMedPubMedCentral Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock. 2014;42:264–70.CrossRefPubMedPubMedCentral
5.
go back to reference Capurso G, Zerboni G, Signoretti M, et al. Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol. 2012;46(Suppl):S46–51.CrossRefPubMed Capurso G, Zerboni G, Signoretti M, et al. Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol. 2012;46(Suppl):S46–51.CrossRefPubMed
6.
go back to reference Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(1339–53):e21. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(1339–53):e21.
7.
go back to reference Gil-Cardoso K, Gines I, Pinent M, et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29:234–48.CrossRefPubMed Gil-Cardoso K, Gines I, Pinent M, et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29:234–48.CrossRefPubMed
8.
go back to reference Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:45176.CrossRefPubMedPubMedCentral Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:45176.CrossRefPubMedPubMedCentral
10.
go back to reference Guo ZZ, Wang P, Yi ZH, et al. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des. 2014;20:1051–62.CrossRefPubMed Guo ZZ, Wang P, Yi ZH, et al. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des. 2014;20:1051–62.CrossRefPubMed
11.
go back to reference Tan C, Ling Z, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015;44:868–75.CrossRefPubMed Tan C, Ling Z, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015;44:868–75.CrossRefPubMed
12.
go back to reference Zhang XM, Zhang ZY, Zhang CH, et al. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed Environ Sci. 2018;31:81–6.PubMed Zhang XM, Zhang ZY, Zhang CH, et al. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed Environ Sci. 2018;31:81–6.PubMed
13.
go back to reference Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.CrossRefPubMed Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.CrossRefPubMed
14.
go back to reference Ding SP, Li JC, Jin C. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol. 2003;9:584–9.CrossRefPubMedPubMedCentral Ding SP, Li JC, Jin C. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol. 2003;9:584–9.CrossRefPubMedPubMedCentral
15.
go back to reference Chen J, Huang C, Wang J, et al. Dysbiosis of intestinal microbiota and decrease in Paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017;12:e0176583.CrossRefPubMedPubMedCentral Chen J, Huang C, Wang J, et al. Dysbiosis of intestinal microbiota and decrease in Paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017;12:e0176583.CrossRefPubMedPubMedCentral
16.
go back to reference Memba R, Duggan SN, Ni Chonchubhair HM, et al. The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology. 2017;17:867–74.CrossRefPubMed Memba R, Duggan SN, Ni Chonchubhair HM, et al. The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology. 2017;17:867–74.CrossRefPubMed
17.
go back to reference Li Q, Wang C, Tang C, et al. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pancreatitis using next-generation sequencing. Front Cell Infect Microbiol. 2018;8:5.CrossRefPubMedPubMedCentral Li Q, Wang C, Tang C, et al. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pancreatitis using next-generation sequencing. Front Cell Infect Microbiol. 2018;8:5.CrossRefPubMedPubMedCentral
20.
go back to reference De Andres J, Manzano S, Garcia C, et al. Modulatory effect of three probiotic strains on infants’ gut microbial composition and immunological parameters on a placebo-controlled, double-blind, randomised study. Benef Microbes. 2018;9:573–84.CrossRefPubMed De Andres J, Manzano S, Garcia C, et al. Modulatory effect of three probiotic strains on infants’ gut microbial composition and immunological parameters on a placebo-controlled, double-blind, randomised study. Benef Microbes. 2018;9:573–84.CrossRefPubMed
21.
go back to reference Routy B, Gopalakrishnan V, Daillere R, et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15:382–96.CrossRefPubMed Routy B, Gopalakrishnan V, Daillere R, et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15:382–96.CrossRefPubMed
22.
go back to reference Ryan CM, Schmidt J, Lewandrowski K, et al. Gut macromolecular permeability in pancreatitis correlates with severity of disease in rats. Gastroenterology. 1993;104:890–5.CrossRefPubMed Ryan CM, Schmidt J, Lewandrowski K, et al. Gut macromolecular permeability in pancreatitis correlates with severity of disease in rats. Gastroenterology. 1993;104:890–5.CrossRefPubMed
23.
24.
go back to reference Liu H, Li W, Wang X, et al. Early gut mucosal dysfunction in patients with acute pancreatitis. Pancreas. 2008;36:192–6.CrossRefPubMed Liu H, Li W, Wang X, et al. Early gut mucosal dysfunction in patients with acute pancreatitis. Pancreas. 2008;36:192–6.CrossRefPubMed
25.
go back to reference Besselink MG, van Santvoort HC, Boermeester MA, et al. Timing and impact of infections in acute pancreatitis. Br J Surg. 2009;96:267–73.CrossRefPubMed Besselink MG, van Santvoort HC, Boermeester MA, et al. Timing and impact of infections in acute pancreatitis. Br J Surg. 2009;96:267–73.CrossRefPubMed
26.
go back to reference Chen J, Kang B, Jiang Q, et al. Alpha-Ketoglutarate in low-protein diets for growing pigs: effects on cecal microbial communities and parameters of microbial metabolism. Front Microbiol. 2018;9:1057.CrossRefPubMedPubMedCentral Chen J, Kang B, Jiang Q, et al. Alpha-Ketoglutarate in low-protein diets for growing pigs: effects on cecal microbial communities and parameters of microbial metabolism. Front Microbiol. 2018;9:1057.CrossRefPubMedPubMedCentral
27.
go back to reference Ma N, Wu Y, Xie F, et al. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota. Oncotarget. 2017;8:44625–38.PubMedPubMedCentral Ma N, Wu Y, Xie F, et al. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota. Oncotarget. 2017;8:44625–38.PubMedPubMedCentral
28.
go back to reference Liu J, Yue S, Yang Z, et al. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res. 2018;134:40–50.CrossRefPubMed Liu J, Yue S, Yang Z, et al. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res. 2018;134:40–50.CrossRefPubMed
29.
go back to reference Kellingray L, Gall GL, Defernez M, et al. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection. J Infect. 2018;77(2):107–118.CrossRefPubMed Kellingray L, Gall GL, Defernez M, et al. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection. J Infect. 2018;77(2):107–118.CrossRefPubMed
30.
go back to reference Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed
31.
go back to reference Rios-Covian D, Ruas-Madiedo P, Margolles A, et al. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.CrossRefPubMedPubMedCentral Rios-Covian D, Ruas-Madiedo P, Margolles A, et al. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.CrossRefPubMedPubMedCentral
32.
go back to reference De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.CrossRefPubMed De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.CrossRefPubMed
33.
go back to reference Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.CrossRefPubMed Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.CrossRefPubMed
34.
go back to reference Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;13:2826–32.CrossRefPubMedPubMedCentral Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;13:2826–32.CrossRefPubMedPubMedCentral
35.
go back to reference Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71.CrossRefPubMedPubMedCentral Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71.CrossRefPubMedPubMedCentral
36.
go back to reference Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17:173–83.CrossRefPubMed Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17:173–83.CrossRefPubMed
37.
go back to reference Li Q, Wang C, Tang C, et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques*. Crit Care Med. 2013;41:1938–50.CrossRefPubMed Li Q, Wang C, Tang C, et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques*. Crit Care Med. 2013;41:1938–50.CrossRefPubMed
38.
go back to reference Schmidt PN, Roug S, Hansen EF, et al. Spectrum of microorganisms in infected walled-off pancreatic necrosis—impact on organ failure and mortality. Pancreatology. 2014;14:444–9.CrossRefPubMed Schmidt PN, Roug S, Hansen EF, et al. Spectrum of microorganisms in infected walled-off pancreatic necrosis—impact on organ failure and mortality. Pancreatology. 2014;14:444–9.CrossRefPubMed
39.
go back to reference Hanna EM, Hamp TJ, McKillop IH, et al. Comparison of culture and molecular techniques for microbial community characterization in infected necrotizing pancreatitis. J Surg Res. 2014;191:362–9.CrossRefPubMed Hanna EM, Hamp TJ, McKillop IH, et al. Comparison of culture and molecular techniques for microbial community characterization in infected necrotizing pancreatitis. J Surg Res. 2014;191:362–9.CrossRefPubMed
40.
go back to reference Huang C, Chen J, Wang J, et al. Dysbiosis of intestinal microbiota and decreased antimicrobial peptide level in Paneth cells during hypertriglyceridemia-related acute necrotizing pancreatitis in rats. Front Microbiol. 2017;8:776.CrossRefPubMedPubMedCentral Huang C, Chen J, Wang J, et al. Dysbiosis of intestinal microbiota and decreased antimicrobial peptide level in Paneth cells during hypertriglyceridemia-related acute necrotizing pancreatitis in rats. Front Microbiol. 2017;8:776.CrossRefPubMedPubMedCentral
Metadata
Title
Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice
Authors
Yin Zhu
Cong He
Xueyang Li
Yan Cai
Jinxiang Hu
Yuanhang Liao
Jianhua Zhao
Liang Xia
Wenhua He
Linmeng Liu
Chun Luo
Xu Shu
Qiang Cai
Youxiang Chen
Nonghua Lu
Publication date
01-04-2019
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 4/2019
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-018-1529-0

Other articles of this Issue 4/2019

Journal of Gastroenterology 4/2019 Go to the issue