Skip to main content
Top
Published in: Pediatric Nephrology 10/2009

01-10-2009 | Original Article

Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations

Authors: Enrica Tosetto, Maria Addis, Gianluca Caridi, Cristiana Meloni, Francesco Emma, Gianluca Vergine, Gilda Stringini, Teresa Papalia, Giancarlo Barbano, Gian Marco Ghiggeri, Laura Ruggeri, Nunzia Miglietti, Angela D′Angelo, Maria Antonietta Melis, Franca Anglani

Published in: Pediatric Nephrology | Issue 10/2009

Login to get access

Abstract

Dent′s disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL1 gene, which is usually mutated in patients with Lowe syndrome, have recently been shown to lead to a Dent-like phenotype, called Dent’s disease 2. About 25% of Dent’s disease patients do not carry CLCN5/OCRL1 mutations. The CLCN4 and SLC9A6 genes have been investigated, but no mutations have been identified. The recent discovery of a novel mediator of renal amino acid transport, collectrin (the TMEM27 gene), may provide new insight on the pathogenesis of Dent’s disease. We studied 31 patients showing a phenotype resembling Dent’s disease but lacking any CLCN5 mutations by direct sequencing of the OCRL1 and TMEM27 genes. Five novel mutations, L88X, P161HfsX167, F270S, D506N and E720D, in the OCRL1 gene, which have not previously been reported in patients with Dent’s or Lowe disease, were identified among 11 patients with the classical Dent’s disease phenotype. No TMEM27 gene mutations were discovered among 26 patients, 20 of whom had an incomplete Dent’s disease phenotype. Our findings confirm that OCRL1 is involved in the functional defects characteristic of Dent’s disease and suggest that patients carrying missense mutations in exons where many Lowe mutations are mapped may represent a phenotypic variant of Lowe syndrome.
Literature
1.
go back to reference Frymoyer PA, Scheinman SJ, Dunham PB, Jones B, Hueber P, Schroeder ET (1991) X-linked recessive nephrolithiasis with renal failure. N Engl J Med 325:681–686CrossRef Frymoyer PA, Scheinman SJ, Dunham PB, Jones B, Hueber P, Schroeder ET (1991) X-linked recessive nephrolithiasis with renal failure. N Engl J Med 325:681–686CrossRef
2.
go back to reference Wrong O, Norden AG, Feest TG (1994) Dent’s disease: a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493PubMed Wrong O, Norden AG, Feest TG (1994) Dent’s disease: a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493PubMed
3.
go back to reference Scheinman SJ, Thakker RV (2000) Genetic aspects of osteoporosis and metabolic bone disease. Humana Press, Totowa, pp 133–152 Scheinman SJ, Thakker RV (2000) Genetic aspects of osteoporosis and metabolic bone disease. Humana Press, Totowa, pp 133–152
4.
go back to reference Lloyd SE, Pearce SHS, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449CrossRef Lloyd SE, Pearce SHS, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449CrossRef
5.
go back to reference Piwon N, Gunther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl−-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373CrossRef Piwon N, Gunther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373CrossRef
6.
go back to reference Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945CrossRef Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945CrossRef
7.
go back to reference Akuta N, Lloyd SE, Igarashi T, Shiraga H, Matsuyama T, Yokoro S, Cox JP, Thakker RV (1997) Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis. Kidney Int 52:911–916CrossRef Akuta N, Lloyd SE, Igarashi T, Shiraga H, Matsuyama T, Yokoro S, Cox JP, Thakker RV (1997) Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis. Kidney Int 52:911–916CrossRef
8.
go back to reference Ludwig M, Doroszewicz J, Seyberth HW, Bökenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dentșs disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237CrossRef Ludwig M, Doroszewicz J, Seyberth HW, Bökenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dentșs disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237CrossRef
9.
go back to reference Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620CrossRef Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620CrossRef
10.
go back to reference Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent disease with mutations in OCRL1. Am J Hum Genet 76:260–267CrossRef Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent disease with mutations in OCRL1. Am J Hum Genet 76:260–267CrossRef
11.
go back to reference Nussbaum RL, Orrison BM, Jänne PA, Charnas L, Chinault AC (1997) Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum Genet 99:145–150CrossRef Nussbaum RL, Orrison BM, Jänne PA, Charnas L, Chinault AC (1997) Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum Genet 99:145–150CrossRef
12.
go back to reference Lowe CU, Terrey M, MacLachan EA (1952) Organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation: a clinical entity. Am J Dis Child 83:164–184 Lowe CU, Terrey M, MacLachan EA (1952) Organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation: a clinical entity. Am J Dis Child 83:164–184
13.
go back to reference Cho HY, Lee BH, Choi HJ, Ha IS, Choi Y, Cheong HI (2008) Renal manifestations of dent disease and lowe syndrome. Pediatr Nephrol 23:243–249CrossRef Cho HY, Lee BH, Choi HJ, Ha IS, Choi Y, Cheong HI (2008) Renal manifestations of dent disease and lowe syndrome. Pediatr Nephrol 23:243–249CrossRef
14.
go back to reference Tosetto E, Ghiggeri GM, Emma F, Barbano G, Carrea A, Vezzoli G, Torregrossa R, Cara M, Ripanti G, Ammenti A, Peruzzi L, Murer L, Ratsch IM, Citron L, Gambaro G, D’Angelo A, Anglani F (2006) Phenotypic and genetic heterogeneity in Dent’s disease—the results of an Italian collaborative study. Nephrol Dial Transplant 21:2452–2463CrossRef Tosetto E, Ghiggeri GM, Emma F, Barbano G, Carrea A, Vezzoli G, Torregrossa R, Cara M, Ripanti G, Ammenti A, Peruzzi L, Murer L, Ratsch IM, Citron L, Gambaro G, D’Angelo A, Anglani F (2006) Phenotypic and genetic heterogeneity in Dent’s disease—the results of an Italian collaborative study. Nephrol Dial Transplant 21:2452–2463CrossRef
15.
go back to reference Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM, Makrides V, Ramadan T, Verrey F, Wagner CA, Penninger JM (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091CrossRef Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM, Makrides V, Ramadan T, Verrey F, Wagner CA, Penninger JM (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091CrossRef
16.
go back to reference Mount DB (2007) Collectrin and the kidney. Curr Opin Nephrol Hypertens 16:427–429CrossRef Mount DB (2007) Collectrin and the kidney. Curr Opin Nephrol Hypertens 16:427–429CrossRef
17.
go back to reference Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH (2007) Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 292:F533–F544CrossRef Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH (2007) Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 292:F533–F544CrossRef
18.
go back to reference Addis M, Loi M, Lepiani C, Cau M, Melis MA (2004) OCRL mutation analysis in Italian patients with Lowe syndrome. Hum Mutat 23:524–525CrossRef Addis M, Loi M, Lepiani C, Cau M, Melis MA (2004) OCRL mutation analysis in Italian patients with Lowe syndrome. Hum Mutat 23:524–525CrossRef
19.
go back to reference Utsch B, Bokenkamp A, Benz MR, Besbas N, Dötsch J, Franke I, Fründ S, Gok F, Hoppe B, Karle S, Kuwertz-Bröking E, Laube G, Neb M, Nuutinen M, Ozaltin F, Rascher W, Ring T, Tasic V, van Wijk JA, Ludwig M (2006) Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48(942):e1–e14 Utsch B, Bokenkamp A, Benz MR, Besbas N, Dötsch J, Franke I, Fründ S, Gok F, Hoppe B, Karle S, Kuwertz-Bröking E, Laube G, Neb M, Nuutinen M, Ozaltin F, Rascher W, Ring T, Tasic V, van Wijk JA, Ludwig M (2006) Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48(942):e1–e14
20.
go back to reference Sekine T, Nozu K, Iyengar R, Fu XJ, Matsuo M, Tanaka R, Iijima K, Matsui E, Harita Y, Inatomi J, Igarashi T (2007) OCRL1 mutations in patients with Dent disease phenotype in Japan. Pediatr Nephrol 22:975–980CrossRef Sekine T, Nozu K, Iyengar R, Fu XJ, Matsuo M, Tanaka R, Iijima K, Matsui E, Harita Y, Inatomi J, Igarashi T (2007) OCRL1 mutations in patients with Dent disease phenotype in Japan. Pediatr Nephrol 22:975–980CrossRef
21.
go back to reference Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814CrossRef Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814CrossRef
22.
go back to reference Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900CrossRef Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900CrossRef
23.
go back to reference Sunyaev S, Ramensky V, Bork P (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 16:198–200CrossRef Sunyaev S, Ramensky V, Bork P (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 16:198–200CrossRef
24.
go back to reference Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479CrossRef Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479CrossRef
25.
go back to reference Ungewickell A, Ward ME, Ungewickell E, Majerus PW (2004) The inositol polyphosphate 5-phosphatase OCRL associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci U S A 101:13501–13506CrossRef Ungewickell A, Ward ME, Ungewickell E, Majerus PW (2004) The inositol polyphosphate 5-phosphatase OCRL associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci U S A 101:13501–13506CrossRef
26.
go back to reference Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by Rab GTPases. EMBO J 25:3750–3761CrossRef Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by Rab GTPases. EMBO J 25:3750–3761CrossRef
27.
go back to reference Faucherre A, Desbois P, Satre V, Lunardi J, Dorseuil O, Gacon G (2003) Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 12:2449–2456CrossRef Faucherre A, Desbois P, Satre V, Lunardi J, Dorseuil O, Gacon G (2003) Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 12:2449–2456CrossRef
28.
go back to reference Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390CrossRef Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390CrossRef
29.
go back to reference McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P (2008) All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem Biophys Res Commun 369:493–499CrossRef McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P (2008) All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem Biophys Res Commun 369:493–499CrossRef
30.
go back to reference Schneider JF, Boltshauser E, Neuhaus TJ, Rauscher C, Martin E (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32:45–48CrossRef Schneider JF, Boltshauser E, Neuhaus TJ, Rauscher C, Martin E (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32:45–48CrossRef
Metadata
Title
Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations
Authors
Enrica Tosetto
Maria Addis
Gianluca Caridi
Cristiana Meloni
Francesco Emma
Gianluca Vergine
Gilda Stringini
Teresa Papalia
Giancarlo Barbano
Gian Marco Ghiggeri
Laura Ruggeri
Nunzia Miglietti
Angela D′Angelo
Maria Antonietta Melis
Franca Anglani
Publication date
01-10-2009
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 10/2009
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-009-1228-4

Other articles of this Issue 10/2009

Pediatric Nephrology 10/2009 Go to the issue