Skip to main content
Top
Published in: Dysphagia 6/2020

Open Access 01-12-2020 | Ultrasound | Review

Simultaneous X-ray Video-Fluoroscopy and Pulsed Ultrasound Velocimetry Analyses of the Pharyngeal Phase of Swallowing of Boluses with Different Rheological Properties

Authors: Waqas M. Qazi, Olle Ekberg, Johan Wiklund, Rashid Mansoor, Mats Stading

Published in: Dysphagia | Issue 6/2020

Login to get access

Abstract

The Ultrasound Velocity Profiling (UVP) technique allows real-time, non-invasive flow mapping of a fluid along a 1D-measuring line. This study explores the possibility of using the UVP technique and X-ray video-fluoroscopy (XVF) to elucidate the deglutition process with the focus on bolus rheology. By positioning the UVP probe so that the pulsed ultrasonic beam passes behind the air-filled trachea, the bolus flow in the pharynx can be measured. Healthy subjects in a clinical study swallowed fluids with different rheological properties: Newtonian (constant shear viscosity and non-elastic); Boger (constant shear viscosity and elastic); and shear thinning (shear rate-dependent shear viscosity and elastic). The results from both the UVP and XVF reveal higher velocities for the shear thinning fluid, followed by the Boger and the Newtonian fluids, demonstrating that the UVP method has equivalent sensitivities for detecting the velocities of fluids with different rheological properties. The velocity of the contraction wave that clears the pharynx was measured in the UVP and found to be independent of bolus rheology. The results show that UVP not only assesses accurately the fluid velocity in a bolus flow, but it can also monitor the structural changes that take place in response to a bolus flow, with the added advantage of being a completely non-invasive technique that does not require the introduction of contrast media.
Appendix
Available only for authorised users
Literature
1.
go back to reference Newman R, Natàlia V, Clavé P, Speyer R. Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the European Society for Swallowing Disorders (ESSD). J Dysphagia. 2016;31(2):232–49.CrossRef Newman R, Natàlia V, Clavé P, Speyer R. Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the European Society for Swallowing Disorders (ESSD). J Dysphagia. 2016;31(2):232–49.CrossRef
2.
go back to reference Moret-Tatay A, Rodríguez-García J, Martí-Bonmatí E, Hernando I, Hernández MJ. Commercial thickeners used by patients with dysphagia: rheological and structural behaviour in different food matrices. Food Hydrocolloids. 2015;51:318–26.CrossRef Moret-Tatay A, Rodríguez-García J, Martí-Bonmatí E, Hernando I, Hernández MJ. Commercial thickeners used by patients with dysphagia: rheological and structural behaviour in different food matrices. Food Hydrocolloids. 2015;51:318–26.CrossRef
3.
go back to reference Tashiro A, Hasegawa A, Kohyama K, Kumagai H, Kumagai H. Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse Doppler method. Biosci Biotechnol Biochem. 2010;74(8):1598–605.CrossRef Tashiro A, Hasegawa A, Kohyama K, Kumagai H, Kumagai H. Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse Doppler method. Biosci Biotechnol Biochem. 2010;74(8):1598–605.CrossRef
4.
go back to reference Clavé P, DE Kraa M, Arreola V, Girvent M, Farré R, Palomera E, Serra-prat M. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. J Aliment Pharmacol Ther. 2006;24(9):1385–94.CrossRef Clavé P, DE Kraa M, Arreola V, Girvent M, Farré R, Palomera E, Serra-prat M. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. J Aliment Pharmacol Ther. 2006;24(9):1385–94.CrossRef
5.
go back to reference Chen FJ, Dirven S, Xu WL, Bronlund J, Li XN, Pullan A. Review of the swallowing system and process for a biologically mimicking swallowing robot. Mechatronics. 2012;22(5):556–67.CrossRef Chen FJ, Dirven S, Xu WL, Bronlund J, Li XN, Pullan A. Review of the swallowing system and process for a biologically mimicking swallowing robot. Mechatronics. 2012;22(5):556–67.CrossRef
6.
go back to reference Nystrom M, Qazi WM, Bulow M, Ekberg O, Stading M. Effects of rheological factors on perceived ease of swallowing. Appl Rheol. 2015;25(6):40–8. Nystrom M, Qazi WM, Bulow M, Ekberg O, Stading M. Effects of rheological factors on perceived ease of swallowing. Appl Rheol. 2015;25(6):40–8.
7.
go back to reference Chen J, Lolivret L. The determining role of bolus rheology in triggering a swallowing. Food Hydrocolloids. 2011;25(3):325–32.CrossRef Chen J, Lolivret L. The determining role of bolus rheology in triggering a swallowing. Food Hydrocolloids. 2011;25(3):325–32.CrossRef
8.
go back to reference Steele CM, Alsanei WA, Ayanikalath S, Barbon CE, Chen J, Cichero JA, Coutts K, Dantas RO, Duivestein J, Giosa L, Hanson B. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. J Dysphagia. 2015;30(1):2–26.CrossRef Steele CM, Alsanei WA, Ayanikalath S, Barbon CE, Chen J, Cichero JA, Coutts K, Dantas RO, Duivestein J, Giosa L, Hanson B. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. J Dysphagia. 2015;30(1):2–26.CrossRef
10.
go back to reference S. Mowlavi, J. Engmann., A. Burbidge., R. Llyod., P. Hayoun., B. Reverand., and M. Ramaioli. In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids. J Biomech, 2016. 49(16): p. 3788–3795.CrossRef S. Mowlavi, J. Engmann., A. Burbidge., R. Llyod., P. Hayoun., B. Reverand., and M. Ramaioli. In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids. J Biomech, 2016. 49(16): p. 3788–3795.CrossRef
11.
go back to reference Steele CM. The blind scientists and the elephant of swallowing: a review of instrumental perspectives on swallowing physiology. J Texure Stud. 2015;46(3):122–37.CrossRef Steele CM. The blind scientists and the elephant of swallowing: a review of instrumental perspectives on swallowing physiology. J Texure Stud. 2015;46(3):122–37.CrossRef
12.
go back to reference Gallegos C, Quinchia L, Ascanio G, Salinas-Vázquez M, Fuente BE. Rheology and dysphagia: an overview. Ann Trans Nord Rheol Soc. 2012;20:3–10. Gallegos C, Quinchia L, Ascanio G, Salinas-Vázquez M, Fuente BE. Rheology and dysphagia: an overview. Ann Trans Nord Rheol Soc. 2012;20:3–10.
13.
go back to reference Salinas-Vázquez M, Vicente W, Fuente BE, Gallegos C, Márquez J, Ascanio G. Early numerical studies on the peristaltic flow through the pharynx. J Texture Stud. 2014;45(2):155–63.CrossRef Salinas-Vázquez M, Vicente W, Fuente BE, Gallegos C, Márquez J, Ascanio G. Early numerical studies on the peristaltic flow through the pharynx. J Texture Stud. 2014;45(2):155–63.CrossRef
14.
go back to reference Koliandris, A.-L., E. Rondeau, L. Hewson, J. Hort, J. T. Andrew, J. Cooper-White and B Wolf. Food grade Boger fluids for sensory studies. Appl Rheol. (2011) 21: 26. Koliandris, A.-L., E. Rondeau, L. Hewson, J. Hort, J. T. Andrew, J. Cooper-White and B Wolf. Food grade Boger fluids for sensory studies. Appl Rheol. (2011) 21: 26.
15.
go back to reference Qazi WM, Wiklund J, Ekberg O, Stading M. A swallowing model for efficient food product development, in The Materials Science Graduate Student Days 2016(February), pp. 23–24, Gothenburg. Sweden. 2016;2016:38. Qazi WM, Wiklund J, Ekberg O, Stading M. A swallowing model for efficient food product development, in The Materials Science Graduate Student Days 2016(February), pp. 23–24, Gothenburg. Sweden. 2016;2016:38.
16.
go back to reference Wiklund J, Shahram I, Stading M. Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci. 2007;62(16):4277–93.CrossRef Wiklund J, Shahram I, Stading M. Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci. 2007;62(16):4277–93.CrossRef
17.
go back to reference Wiklund J, Stading M. Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions. Flow Meas Instrum. 2008;19(3–4):171–9.CrossRef Wiklund J, Stading M. Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions. Flow Meas Instrum. 2008;19(3–4):171–9.CrossRef
18.
go back to reference Hasegawa A, Otoguro A, Kumagai H, Nakazawa F. Velocity of swallowed gel food in the pharynx by ultrasonic method. Nippon Shokuhin Kagaku Kogaku Kaishi. 2005;52(10):441–7.CrossRef Hasegawa A, Otoguro A, Kumagai H, Nakazawa F. Velocity of swallowed gel food in the pharynx by ultrasonic method. Nippon Shokuhin Kagaku Kogaku Kaishi. 2005;52(10):441–7.CrossRef
19.
go back to reference Gao Z, Kohyama K. Ultrasound pulsed wave Doppler imaging of the esophagus illustrates the effects of water volume on Bolus kinematics. J Texture Stud. 2014;45(5):335–43.CrossRef Gao Z, Kohyama K. Ultrasound pulsed wave Doppler imaging of the esophagus illustrates the effects of water volume on Bolus kinematics. J Texture Stud. 2014;45(5):335–43.CrossRef
20.
go back to reference Stading M, Bohlin L. Contraction flow measurements of extensional properties. Annu Trans Nord Rheol Soc. 2001;8:181–6. Stading M, Bohlin L. Contraction flow measurements of extensional properties. Annu Trans Nord Rheol Soc. 2001;8:181–6.
21.
go back to reference Wikström K, Bohlin L. Extensional flow studies of wheat flour dough. I. Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance. J Cereal Sci. 1999;29(3):217–26.CrossRef Wikström K, Bohlin L. Extensional flow studies of wheat flour dough. I. Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance. J Cereal Sci. 1999;29(3):217–26.CrossRef
22.
go back to reference Alsanei WA, Chen J. Studies of the oral capabilities in relation to bolus manipulations and the ease of initiating bolus flow. J Texture Stud. 2014;45(1):1–12.CrossRef Alsanei WA, Chen J. Studies of the oral capabilities in relation to bolus manipulations and the ease of initiating bolus flow. J Texture Stud. 2014;45(1):1–12.CrossRef
23.
go back to reference Rosen SP, Jones CA, McCulloch TM. Pharyngeal swallowing pressures in the base-of-tongue and hypopharynx regions identified with three-dimensional manometry. Laryngoscope. 2017;127(9):1989–95.CrossRef Rosen SP, Jones CA, McCulloch TM. Pharyngeal swallowing pressures in the base-of-tongue and hypopharynx regions identified with three-dimensional manometry. Laryngoscope. 2017;127(9):1989–95.CrossRef
24.
go back to reference Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC. The rheology and processing behaviour of starch and gum-based dysphagia thickeners. J Rheol. 2013;57(6):1533–53.CrossRef Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC. The rheology and processing behaviour of starch and gum-based dysphagia thickeners. J Rheol. 2013;57(6):1533–53.CrossRef
27.
go back to reference Pouderoux P, Kahrilas PJ. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterology. 1995;108(5):1418–26.CrossRef Pouderoux P, Kahrilas PJ. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterology. 1995;108(5):1418–26.CrossRef
28.
go back to reference Zhu J, Mizunuma H, Michiwaki Y. Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing. J Texture Stud. 2014;45(6):430–9.CrossRef Zhu J, Mizunuma H, Michiwaki Y. Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing. J Texture Stud. 2014;45(6):430–9.CrossRef
29.
go back to reference Chang MW, Rosendall B, Finlayson BA. Mathematical modeling of normal pharyngeal bolus transport: a preliminary study. J Rehabil Res Dev. 1998;35(3):327.PubMed Chang MW, Rosendall B, Finlayson BA. Mathematical modeling of normal pharyngeal bolus transport: a preliminary study. J Rehabil Res Dev. 1998;35(3):327.PubMed
30.
go back to reference Mashimo GA. Physiology of oral, pharyngeal, and esophageal motility. GI Motility online, 2006. Mashimo GA. Physiology of oral, pharyngeal, and esophageal motility. GI Motility online, 2006.
31.
go back to reference Bülow M, Olsson R, Ekberg O. Videomanometric analysis of supraglottic swallow, effortful swallow, and chin tuck in healthy volunteers. J Dysphagia. 1999;14(2):67–72.CrossRef Bülow M, Olsson R, Ekberg O. Videomanometric analysis of supraglottic swallow, effortful swallow, and chin tuck in healthy volunteers. J Dysphagia. 1999;14(2):67–72.CrossRef
32.
go back to reference Olsson R, Kjellin O, Ekberg O. Videomanometric aspects of pharyngeal constrictor activity. J Dysphagia. 1996;11(2):83–6.CrossRef Olsson R, Kjellin O, Ekberg O. Videomanometric aspects of pharyngeal constrictor activity. J Dysphagia. 1996;11(2):83–6.CrossRef
Metadata
Title
Simultaneous X-ray Video-Fluoroscopy and Pulsed Ultrasound Velocimetry Analyses of the Pharyngeal Phase of Swallowing of Boluses with Different Rheological Properties
Authors
Waqas M. Qazi
Olle Ekberg
Johan Wiklund
Rashid Mansoor
Mats Stading
Publication date
01-12-2020
Publisher
Springer US
Published in
Dysphagia / Issue 6/2020
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-020-10092-4

Other articles of this Issue 6/2020

Dysphagia 6/2020 Go to the issue