Skip to main content
Top
Published in: Journal of Cancer Research and Clinical Oncology 3/2011

01-03-2011 | Original Paper

Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma

Authors: Wu-hua Guo, Li-hua Yuan, Zhi-hua Xiao, Dan Liu, Ji-xiang Zhang

Published in: Journal of Cancer Research and Clinical Oncology | Issue 3/2011

Login to get access

Abstract

Purpose

To investigate the expression of SUMO-1 in human hepatocellular carcinoma (HCC) cell lines and clinical HCC samples.

Methods

RT–PCR and Western blot were used to detect the expressions of SUMO-1 in HCC cell lines, clinical HCC samples,and the non-neoplastic liver tissues adjacent to HCC. After transfection of SUMO-1 siRNA into HCC cell line SMMC-7721, the expression levels of Bcl-2, c-Myc and α-tubulin were examined, and MTT assay and cell cycle analysis were carried out as well.

Results

Overexpressions of SUMO-1 were detected in HCC cell lines and clinical HCC samples, while the expression level of SUMO-1 in the non-neoplastic liver tissues was significantly lower (P < 0.001). Transfection of SUMO-1 siRNA resulted in 73.43% of maximal silencing efficiency of SUMO-1 in 48 h. The expressions of Bcl-2 and c-Myc were down-regulated coincidentally. SUMO-1 siRNA notably inhibited SMMC-7721 cells proliferation in vitro and increased the ratios of G2 phase and S phase in the cells.

Conclusions

Owing to overexpression of SUMO-1 in HCC and its important role in the development of HCC, SUMO-1 could be a latent target in diagnosis and therapy of HCC.
Literature
go back to reference Amati B, Brooks MW, Levy N et al (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72(2):233–245CrossRefPubMed Amati B, Brooks MW, Levy N et al (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72(2):233–245CrossRefPubMed
go back to reference Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33(3):545–557CrossRefPubMed Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33(3):545–557CrossRefPubMed
go back to reference Brunelle JK, Santore MT, Budinger GR et al (2004) c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem 279(6):4305–4312CrossRefPubMed Brunelle JK, Santore MT, Budinger GR et al (2004) c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem 279(6):4305–4312CrossRefPubMed
go back to reference Buschmann T, Fuchs SY, Lee CG et al (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101(7):753–762CrossRefPubMed Buschmann T, Fuchs SY, Lee CG et al (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101(7):753–762CrossRefPubMed
go back to reference Cao X, Bennett RL, May WS (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283(21):14490–14496CrossRefPubMed Cao X, Bennett RL, May WS (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283(21):14490–14496CrossRefPubMed
go back to reference Carter S, Bischof O, Dejean A et al (2007) C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9(4):428–435CrossRefPubMed Carter S, Bischof O, Dejean A et al (2007) C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9(4):428–435CrossRefPubMed
go back to reference Deyrieux AF, Rosas-Acosta G, Ozbun MA et al (2007) Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120(Pt 1):125–136PubMed Deyrieux AF, Rosas-Acosta G, Ozbun MA et al (2007) Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120(Pt 1):125–136PubMed
go back to reference Di Bacco A, Ouyang J, Lee HY et al (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26(12):4489–4498CrossRefPubMed Di Bacco A, Ouyang J, Lee HY et al (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26(12):4489–4498CrossRefPubMed
go back to reference Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t (14; 18) lymphomas. Mol Cell Biol 25(5):1608–1619CrossRefPubMed Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t (14; 18) lymphomas. Mol Cell Biol 25(5):1608–1619CrossRefPubMed
go back to reference Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26(12):4675–4689CrossRefPubMed Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26(12):4675–4689CrossRefPubMed
go back to reference Iyer NG, Chin SF, Ozdag H et al (2004) p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101(19):7386–7391CrossRefPubMed Iyer NG, Chin SF, Ozdag H et al (2004) p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101(19):7386–7391CrossRefPubMed
go back to reference Jones MC, Fusi L, Higham JH et al (2006) Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci USA 103(44):16272–16277CrossRefPubMed Jones MC, Fusi L, Higham JH et al (2006) Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci USA 103(44):16272–16277CrossRefPubMed
go back to reference Kang JS, Saunier EF, Akhurst RJ et al (2008) The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664CrossRefPubMed Kang JS, Saunier EF, Akhurst RJ et al (2008) The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664CrossRefPubMed
go back to reference Karamouzis MV, Konstantinopoulos PA, Badra FA et al (2008) SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107(2):195–210CrossRefPubMed Karamouzis MV, Konstantinopoulos PA, Badra FA et al (2008) SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107(2):195–210CrossRefPubMed
go back to reference Kim KI, Baek SH (2009) Small ubiquitin-like modifiers in cellular malignancy and metastasis. Int Rev Cell Mol Biol 273:265–311CrossRefPubMed Kim KI, Baek SH (2009) Small ubiquitin-like modifiers in cellular malignancy and metastasis. Int Rev Cell Mol Biol 273:265–311CrossRefPubMed
go back to reference Kim KI, Baek SH, Jeon YJ et al (2000) A new SUMO-1-specific protease, SUSP1 that is highly expressed in reproductive organs. J Biol Chem 275(19):14102–14106CrossRefPubMed Kim KI, Baek SH, Jeon YJ et al (2000) A new SUMO-1-specific protease, SUSP1 that is highly expressed in reproductive organs. J Biol Chem 275(19):14102–14106CrossRefPubMed
go back to reference Lee MH, Lee SW, Lee EJ et al (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8(12):1424–1431CrossRefPubMed Lee MH, Lee SW, Lee EJ et al (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8(12):1424–1431CrossRefPubMed
go back to reference Martin S, Nishimune A, Mellor JR et al (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447(7142):321–325CrossRefPubMed Martin S, Nishimune A, Mellor JR et al (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447(7142):321–325CrossRefPubMed
go back to reference Okuno S, Shimizu S, Ito T et al (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273(51):34272–34277CrossRefPubMed Okuno S, Shimizu S, Ito T et al (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273(51):34272–34277CrossRefPubMed
go back to reference Park J, Kim K, Lee EJ et al (2007) Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA 104(43):17028–17033CrossRefPubMed Park J, Kim K, Lee EJ et al (2007) Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA 104(43):17028–17033CrossRefPubMed
go back to reference Pataer A, Fanale MA, Roth JA et al (2006) Induction of apoptosis in human lung cancer cells following treatment with amifostine and an adenoviral vector containing wild-type p53. Cancer Gene Ther 13(8):806–814CrossRefPubMed Pataer A, Fanale MA, Roth JA et al (2006) Induction of apoptosis in human lung cancer cells following treatment with amifostine and an adenoviral vector containing wild-type p53. Cancer Gene Ther 13(8):806–814CrossRefPubMed
go back to reference Pfander B, Moldovan GL, Sacher M et al (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428–433PubMed Pfander B, Moldovan GL, Sacher M et al (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428–433PubMed
go back to reference Reynolds JE, Eastman A (1996) Intracellular calcium stores are not required for Bcl-2-mediated protection from apoptosis. J Biol Chem 271(44):27739–27743CrossRefPubMed Reynolds JE, Eastman A (1996) Intracellular calcium stores are not required for Bcl-2-mediated protection from apoptosis. J Biol Chem 271(44):27739–27743CrossRefPubMed
go back to reference Rosas-Acosta G, Russell WK, Deyrieux A et al (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4(1):56–72PubMed Rosas-Acosta G, Russell WK, Deyrieux A et al (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4(1):56–72PubMed
go back to reference Saitoh H, Sparrow DB, Shiomi T et al (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124CrossRefPubMed Saitoh H, Sparrow DB, Shiomi T et al (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124CrossRefPubMed
go back to reference Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78–81CrossRefPubMed Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78–81CrossRefPubMed
go back to reference Song MS, Song SJ, Kim SY et al (2008) The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 27(13):1863–1874CrossRefPubMed Song MS, Song SJ, Kim SY et al (2008) The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 27(13):1863–1874CrossRefPubMed
go back to reference Sutter AP, Maaser K, Grabowski P et al (2004) Peripheral benzodiazepine receptor ligands induce apoptosis and cell cycle arrest in human hepatocellular carcinoma cells and enhance chemosensitivity to paclitaxel, docetaxel, doxorubicin and the Bcl-2 inhibitor HA14–1. J Hepatol 41(5):799–807CrossRefPubMed Sutter AP, Maaser K, Grabowski P et al (2004) Peripheral benzodiazepine receptor ligands induce apoptosis and cell cycle arrest in human hepatocellular carcinoma cells and enhance chemosensitivity to paclitaxel, docetaxel, doxorubicin and the Bcl-2 inhibitor HA14–1. J Hepatol 41(5):799–807CrossRefPubMed
go back to reference Wang H, Mannava S, Grachtchouk V et al (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27(13):1905–1915CrossRefPubMed Wang H, Mannava S, Grachtchouk V et al (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27(13):1905–1915CrossRefPubMed
go back to reference Weidtkamp-Peters S, Lenser T, Negorev D et al (2008) Dynamics of component exchange at PML nuclear bodies. J Cell Sci 121:2731–2743CrossRefPubMed Weidtkamp-Peters S, Lenser T, Negorev D et al (2008) Dynamics of component exchange at PML nuclear bodies. J Cell Sci 121:2731–2743CrossRefPubMed
go back to reference Wu F, Zhu S, Ding Y et al (2009) MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15(5):1550–1557CrossRefPubMed Wu F, Zhu S, Ding Y et al (2009) MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15(5):1550–1557CrossRefPubMed
go back to reference Xhemalce B, Riising EM, Baumann P et al (2007) Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 104(3):893–898CrossRefPubMed Xhemalce B, Riising EM, Baumann P et al (2007) Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 104(3):893–898CrossRefPubMed
go back to reference Xu GW, Sun ZT, Forrester K et al (1996) Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24(5):1264–1268CrossRefPubMed Xu GW, Sun ZT, Forrester K et al (1996) Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24(5):1264–1268CrossRefPubMed
go back to reference Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26(5):1786–1794CrossRefPubMed Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26(5):1786–1794CrossRefPubMed
Metadata
Title
Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma
Authors
Wu-hua Guo
Li-hua Yuan
Zhi-hua Xiao
Dan Liu
Ji-xiang Zhang
Publication date
01-03-2011
Publisher
Springer-Verlag
Published in
Journal of Cancer Research and Clinical Oncology / Issue 3/2011
Print ISSN: 0171-5216
Electronic ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-010-0920-x

Other articles of this Issue 3/2011

Journal of Cancer Research and Clinical Oncology 3/2011 Go to the issue