Skip to main content
Top
Published in: Medical Microbiology and Immunology 2/2008

01-06-2008 | Review

Correlation of dendritic cell maturation and the formation of aggregates of poly-ubiquitinated proteins in the cytosol

Authors: Melanie Faßbender, Sylvia Herter, Rafaela Holtappels, Hansjörg Schild

Published in: Medical Microbiology and Immunology | Issue 2/2008

Login to get access

Abstract

Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs) in the immune system. Therefore, they are able to take up antigen by phagocytosis, macropinocytosis or endocytosis, process it in the cytosol and present it to naive T cells. It is known that presentation of the immunodominant influenza virus nucleoprotein-derived CTL epitope is delayed in bone marrow-derived DCs (BMDCs) compared to non-professional APCs. This delay coincided with the formation of transient aggregations of ubiquitinated proteins (DALIS, dendritic cell aggresome-like induced structures), which contain probably defective ribosomal products (DRiPs). DRiPs appear in the cytosol of maturing DCs and macrophages. Normally, DRiPs are degraded rapidly by proteasomes. However, their storage in DALIS delays their degradation. So, it is hypothesized that DALIS can function as antigen depots allowing DCs to coordinate maturation and antigen presentation during their migration to the lymph nodes. Upon inhibition of several pathways among the in signal transduction pathways of DCs, like the phosphatidylinositol 3-kinase (PI3-K) or the mammalian target of Rapamycin (mTOR), the cells show a rendered maturation profile. The formation of DALIS is inhibited in these cells which can be expected to influence antigen processing and presentation.
Literature
1.
go back to reference Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258CrossRefPubMed Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258CrossRefPubMed
2.
go back to reference Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667CrossRefPubMed Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667CrossRefPubMed
3.
go back to reference Lelouard H, Gatti E, Cappello F, Gresser O, Camosseto V, Pierre P (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417:177–182CrossRefPubMed Lelouard H, Gatti E, Cappello F, Gresser O, Camosseto V, Pierre P (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417:177–182CrossRefPubMed
4.
go back to reference Canadien V, Tan T, Zilber R, Szeto J, Perrin AJ, Brumell JH (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174:2471–2475CrossRefPubMed Canadien V, Tan T, Zilber R, Szeto J, Perrin AJ, Brumell JH (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174:2471–2475CrossRefPubMed
5.
go back to reference Herter S, Osterloh P, Hilf N, Rechtsteiner G, Hohfeld J, Rammensee HG, Schild H (2005) Dendritic cell aggresome-like-induced structure formation and delayed antigen presentation coincide in influenza virus-infected dendritic cells. J Immunol 175:891–898CrossRefPubMed Herter S, Osterloh P, Hilf N, Rechtsteiner G, Hohfeld J, Rammensee HG, Schild H (2005) Dendritic cell aggresome-like-induced structure formation and delayed antigen presentation coincide in influenza virus-infected dendritic cells. J Immunol 175:891–898CrossRefPubMed
7.
go back to reference Reuben JS (2006) Ras, PI(3)K and mTOR signalling controls tumor cell growth. Nature 441:424–430CrossRef Reuben JS (2006) Ras, PI(3)K and mTOR signalling controls tumor cell growth. Nature 441:424–430CrossRef
8.
go back to reference Yewdell JW, Schubert U, Bennink JR (2001) At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J Cell Sci 114:845–851CrossRefPubMed Yewdell JW, Schubert U, Bennink JR (2001) At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J Cell Sci 114:845–851CrossRefPubMed
9.
go back to reference Yewdell J (2002) To DRiP or not to DRiP: generating peptide ligands for MHC class I molecules from biosynthesized proteins. Mol Immunol 39:139–146CrossRefPubMed Yewdell J (2002) To DRiP or not to DRiP: generating peptide ligands for MHC class I molecules from biosynthesized proteins. Mol Immunol 39:139–146CrossRefPubMed
10.
go back to reference Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157:1823–1826CrossRefPubMed Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157:1823–1826CrossRefPubMed
11.
go back to reference Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774CrossRefPubMed Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774CrossRefPubMed
12.
go back to reference Lelouard H, Ferrand V, Marguet D, Bania J, Camosseto V, David A, Gatti E, Pierre P (2004) Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J Cell Biol 164:667–675CrossRefPubMedPubMedCentral Lelouard H, Ferrand V, Marguet D, Bania J, Camosseto V, David A, Gatti E, Pierre P (2004) Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J Cell Biol 164:667–675CrossRefPubMedPubMedCentral
13.
go back to reference Bhattacharyya S, Sen P, Wallet M, Long B, Baldwin AS Jr., Tisch R (2004) Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IkappaB kinase activity. Blood 104:1100–1109CrossRefPubMed Bhattacharyya S, Sen P, Wallet M, Long B, Baldwin AS Jr., Tisch R (2004) Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IkappaB kinase activity. Blood 104:1100–1109CrossRefPubMed
14.
go back to reference Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W, Bernasconi S, Sironi M, Santoro A, Garlanda C, Facchetti F, Wymann MP, Vecchi A, Hirsch E, Mantovani A, Sozzani S (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 23:3505–3515CrossRefPubMedPubMedCentral Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W, Bernasconi S, Sironi M, Santoro A, Garlanda C, Facchetti F, Wymann MP, Vecchi A, Hirsch E, Mantovani A, Sozzani S (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 23:3505–3515CrossRefPubMedPubMedCentral
15.
go back to reference Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of Lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046CrossRefPubMed Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of Lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046CrossRefPubMed
16.
go back to reference Hackstein H (2002) Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by BMDC. Blood 100(3):1084CrossRefPubMed Hackstein H (2002) Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by BMDC. Blood 100(3):1084CrossRefPubMed
17.
go back to reference Morice WG (1993) Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 268(30):22737–22745CrossRefPubMed Morice WG (1993) Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 268(30):22737–22745CrossRefPubMed
18.
go back to reference Sehgal SN (1998) Rapamune® (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31(5):335–340CrossRefPubMed Sehgal SN (1998) Rapamune® (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31(5):335–340CrossRefPubMed
20.
go back to reference Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844CrossRefPubMed Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844CrossRefPubMed
21.
go back to reference Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816CrossRefPubMedPubMedCentral Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816CrossRefPubMedPubMedCentral
Metadata
Title
Correlation of dendritic cell maturation and the formation of aggregates of poly-ubiquitinated proteins in the cytosol
Authors
Melanie Faßbender
Sylvia Herter
Rafaela Holtappels
Hansjörg Schild
Publication date
01-06-2008
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 2/2008
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-008-0091-4

Other articles of this Issue 2/2008

Medical Microbiology and Immunology 2/2008 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.