Skip to main content
Top
Published in: Brain Structure and Function 4/2022

01-05-2022 | Review

Neurophysiological considerations for visual implants

Authors: Sabrina J. Meikle, Yan T. Wong

Published in: Brain Structure and Function | Issue 4/2022

Login to get access

Abstract

Neural implants have the potential to restore visual capabilities in blind individuals by electrically stimulating the neurons of the visual system. This stimulation can produce visual percepts known as phosphenes. The ideal location of electrical stimulation for achieving vision restoration is widely debated and dependent on the physiological properties of the targeted tissue. Here, the neurophysiology of several potential target structures within the visual system will be explored regarding their benefits and downfalls in producing phosphenes. These regions will include the lateral geniculate nucleus, primary visual cortex, visual area 2, visual area 3, visual area 4 and the middle temporal area. Based on the existing engineering limitations of neural prostheses, we anticipate that electrical stimulation of any singular brain region will be incapable of achieving high-resolution naturalistic perception including color, texture, shape and motion. As improvements in visual acuity facilitate improvements in quality of life, emulating naturalistic vision should be one of the ultimate goals of visual prostheses. To achieve this goal, we propose that multiple brain areas will need to be targeted in unison enabling different aspects of vision to be recreated.
Literature
go back to reference Adams DL, Zeki S (2001) Functional organization of macaque V3 for stereoscopic depth. J Neurophysiol 86:2195–2203 PubMedCrossRef Adams DL, Zeki S (2001) Functional organization of macaque V3 for stereoscopic depth. J Neurophysiol 86:2195–2203 PubMedCrossRef
go back to reference Allison-Walker T, Hagan MA, Price NSC, Wong YT (2021) Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimul 14:741–750 PubMedCrossRef Allison-Walker T, Hagan MA, Price NSC, Wong YT (2021) Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimul 14:741–750 PubMedCrossRef
go back to reference Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859PubMedPubMedCentralCrossRef Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859PubMedPubMedCentralCrossRef
go back to reference Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259PubMedCrossRef Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259PubMedCrossRef
go back to reference Barry MP et al (2020) Video-mode percepts are smaller than sums of single-electrode phosphenes with the Orion® visual cortical prosthesis. Invest Ophthalmol vis Sci 61:927–927 Barry MP et al (2020) Video-mode percepts are smaller than sums of single-electrode phosphenes with the Orion® visual cortical prosthesis. Invest Ophthalmol vis Sci 61:927–927
go back to reference Becker HGT, Haarmeier T, Tatagiba M, Gharabaghi A (2013) Electrical stimulation of the human homolog of the medial superior temporal area induces visual motion blindness. J Neurosci 33:18288PubMedPubMedCentralCrossRef Becker HGT, Haarmeier T, Tatagiba M, Gharabaghi A (2013) Electrical stimulation of the human homolog of the medial superior temporal area induces visual motion blindness. J Neurosci 33:18288PubMedPubMedCentralCrossRef
go back to reference Beyeler M, Rokem A, Boynton GM, Fine I (2017) Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 14:051003PubMedPubMedCentralCrossRef Beyeler M, Rokem A, Boynton GM, Fine I (2017) Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 14:051003PubMedPubMedCentralCrossRef
go back to reference Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G, Vato A (2016) A bidirectional brain-machine interface featuring a neuromorphic hardware decoder. Front Neurosci 10:563PubMedPubMedCentralCrossRef Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G, Vato A (2016) A bidirectional brain-machine interface featuring a neuromorphic hardware decoder. Front Neurosci 10:563PubMedPubMedCentralCrossRef
go back to reference Bosking WH, Sun P, Ozker M, Pei X, Foster BL, Beauchamp MS, Yoshor D (2017) Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci 37:7188PubMedPubMedCentralCrossRef Bosking WH, Sun P, Ozker M, Pei X, Foster BL, Beauchamp MS, Yoshor D (2017) Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci 37:7188PubMedPubMedCentralCrossRef
go back to reference Brelén ME, Duret F, Gérard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2:S22PubMedCrossRef Brelén ME, Duret F, Gérard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2:S22PubMedCrossRef
go back to reference Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63PubMedCrossRef Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63PubMedCrossRef
go back to reference Brunton E, Lowery A, Rajan R (2012) A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Front Neuroeng 5:23PubMedPubMedCentralCrossRef Brunton E, Lowery A, Rajan R (2012) A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Front Neuroeng 5:23PubMedPubMedCentralCrossRef
go back to reference Büttner-Ennever JA, Cohen B, Horn AKE, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107PubMedCrossRef Büttner-Ennever JA, Cohen B, Horn AKE, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107PubMedCrossRef
go back to reference Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system. Ann Biomed Eng 20:439–449PubMedCrossRef Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system. Ann Biomed Eng 20:439–449PubMedCrossRef
go back to reference Chen SC, Hallum LE, Lovell NH, Suaning GJ (2005) Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng 2:S135–S145PubMedCrossRef Chen SC, Hallum LE, Lovell NH, Suaning GJ (2005) Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng 2:S135–S145PubMedCrossRef
go back to reference Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V (2019) The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 10:5601PubMedPubMedCentralCrossRef Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V (2019) The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 10:5601PubMedPubMedCentralCrossRef
go back to reference Chen X, Wang F, Fernandez E, Roelfsema P (2020) Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370:1191PubMedCrossRef Chen X, Wang F, Fernandez E, Roelfsema P (2020) Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370:1191PubMedCrossRef
go back to reference Choi CW, Kim PS, Shin SA, Yang JY, Yang YS (2014) Lateral geniculate body evoked potentials elicited by visual and electrical stimulation. Korean J Ophthalmol 28:337–342PubMedPubMedCentralCrossRef Choi CW, Kim PS, Shin SA, Yang JY, Yang YS (2014) Lateral geniculate body evoked potentials elicited by visual and electrical stimulation. Korean J Ophthalmol 28:337–342PubMedPubMedCentralCrossRef
go back to reference Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273PubMedCrossRef Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273PubMedCrossRef
go back to reference Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2014) Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J Neurophysiol 113:730–739PubMedPubMedCentralCrossRef Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2014) Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J Neurophysiol 113:730–739PubMedPubMedCentralCrossRef
go back to reference DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677–680PubMedCrossRef DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677–680PubMedCrossRef
go back to reference Deng Z-D, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13PubMedCrossRef Deng Z-D, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13PubMedCrossRef
go back to reference DeYoe EA, Lewine JD, Doty RW (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol 94:3443–3450PubMedCrossRef DeYoe EA, Lewine JD, Doty RW (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol 94:3443–3450PubMedCrossRef
go back to reference Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576PubMedPubMedCentralCrossRef Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576PubMedPubMedCentralCrossRef
go back to reference Dorn JD (2020) Progress with the Orion Cortical Visual Prosthesis. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 20-24 July 2020 Dorn JD (2020) Progress with the Orion Cortical Visual Prosthesis. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 20-24 July 2020
go back to reference Dumm G, Fallon JB, Williams CE, Shivdasani MN (2014) Virtual electrodes by current steering in retinal prostheses. Invest Ophthalmol vis Sci 55:8077–8085PubMedCrossRef Dumm G, Fallon JB, Williams CE, Shivdasani MN (2014) Virtual electrodes by current steering in retinal prostheses. Invest Ophthalmol vis Sci 55:8077–8085PubMedCrossRef
go back to reference Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom-up dependent gating of frontal signals in early visual cortex. Science (new York, NY) 321:414–417CrossRef Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom-up dependent gating of frontal signals in early visual cortex. Science (new York, NY) 321:414–417CrossRef
go back to reference Ekstrom LB, Roelfsema PR, Arsenault JT, Kolster H, Vanduffel W (2009) Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field. J Neurosci 29:10683–10694PubMedPubMedCentralCrossRef Ekstrom LB, Roelfsema PR, Arsenault JT, Kolster H, Vanduffel W (2009) Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field. J Neurosci 29:10683–10694PubMedPubMedCentralCrossRef
go back to reference Elward A et al (2015) Risk factors for craniotomy or spinal fusion surgical site infection. Pediatr Infect Dis J 34:1323–1328PubMedCrossRef Elward A et al (2015) Risk factors for craniotomy or spinal fusion surgical site infection. Pediatr Infect Dis J 34:1323–1328PubMedCrossRef
go back to reference Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192PubMedCrossRef Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192PubMedCrossRef
go back to reference Epstein CM, Davey KR (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19:376–381PubMedCrossRef Epstein CM, Davey KR (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19:376–381PubMedCrossRef
go back to reference Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol 57:889–920PubMedCrossRef Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol 57:889–920PubMedCrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex (new York, NY: 1991) 1:1–47 Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex (new York, NY: 1991) 1:1–47
go back to reference Fernandez E, Normann R (2017) CORTIVIS approach for an intracortical visual prostheses. In: Fernández E, Normann RA (eds) Artificial Vision. Springer, Cam, pp 191–201CrossRef Fernandez E, Normann R (2017) CORTIVIS approach for an intracortical visual prostheses. In: Fernández E, Normann RA (eds) Artificial Vision. Springer, Cam, pp 191–201CrossRef
go back to reference Fertonani A, Ferrari C, Miniussi C (2015) What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol 126:2181–2188PubMedCrossRef Fertonani A, Ferrari C, Miniussi C (2015) What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol 126:2181–2188PubMedCrossRef
go back to reference Fornos AP, Sommerhalder J, Rappaz B, Safran AB, Pelizzone M (2005) Simulation of artificial vision, III: do the spatial or temporal characteristics of stimulus pixelization really matter? Invest Ophthalmol vis Sci 46:3906–3912PubMedCrossRef Fornos AP, Sommerhalder J, Rappaz B, Safran AB, Pelizzone M (2005) Simulation of artificial vision, III: do the spatial or temporal characteristics of stimulus pixelization really matter? Invest Ophthalmol vis Sci 46:3906–3912PubMedCrossRef
go back to reference Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923PubMedCrossRef Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923PubMedCrossRef
go back to reference Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S (2019) Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol 122:1765–1776PubMedCrossRef Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S (2019) Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol 122:1765–1776PubMedCrossRef
go back to reference Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413PubMedCrossRef Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413PubMedCrossRef
go back to reference Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW (2020) Focal electrical stimulation of cortical functional networks. Cereb Cortex 30:5532–5543PubMedCrossRef Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW (2020) Focal electrical stimulation of cortical functional networks. Cereb Cortex 30:5532–5543PubMedCrossRef
go back to reference Irons JL, Gradden T, Zhang A, He X, Barnes N, Scott AF, McKone E (2017) Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res 137:61–79PubMedCrossRef Irons JL, Gradden T, Zhang A, He X, Barnes N, Scott AF, McKone E (2017) Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res 137:61–79PubMedCrossRef
go back to reference John SE, Grayden DB, Yanagisawa T (2019) The future potential of the Stentrode. Expert Rev Med Devices 16:841–843PubMedCrossRef John SE, Grayden DB, Yanagisawa T (2019) The future potential of the Stentrode. Expert Rev Med Devices 16:841–843PubMedCrossRef
go back to reference Kammer T, Puls K, Erb M, Grodd W (2005) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140PubMedCrossRef Kammer T, Puls K, Erb M, Grodd W (2005) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140PubMedCrossRef
go back to reference Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18:1839–1843PubMedCrossRef Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18:1839–1843PubMedCrossRef
go back to reference Kaskan PM, Dillenburger BC, Lu HD, Roe AW, Kaas JH (2010) Orientation and direction-of-motion response in the middle temporal visual area (MT) of new world owl monkeys as revealed by intrinsic-signal optical imaging. Front Neuroanat 4:23–23PubMedPubMedCentral Kaskan PM, Dillenburger BC, Lu HD, Roe AW, Kaas JH (2010) Orientation and direction-of-motion response in the middle temporal visual area (MT) of new world owl monkeys as revealed by intrinsic-signal optical imaging. Front Neuroanat 4:23–23PubMedPubMedCentral
go back to reference Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26PubMedCrossRef Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26PubMedCrossRef
go back to reference Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91:438–448PubMedCrossRef Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91:438–448PubMedCrossRef
go back to reference Kermani E, Asemani D (2014) A robust adaptive algorithm of moving object detection for video surveillance. EURASIP J Image Video Process 2014:27CrossRef Kermani E, Asemani D (2014) A robust adaptive algorithm of moving object detection for video surveillance. EURASIP J Image Video Process 2014:27CrossRef
go back to reference Klink PC, Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2017) Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron 95:209-220.e203PubMedCrossRef Klink PC, Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2017) Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron 95:209-220.e203PubMedCrossRef
go back to reference Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38:974–986PubMedCrossRef Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38:974–986PubMedCrossRef
go back to reference Kosslyn SM et al (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170PubMedCrossRef Kosslyn SM et al (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170PubMedCrossRef
go back to reference Kosta P et al (2018) Electromagnetic safety assessment of a cortical implant for vision restoration. IEEE J Electromagn RF Microw Med Biol 2:56–63CrossRef Kosta P et al (2018) Electromagnetic safety assessment of a cortical implant for vision restoration. IEEE J Electromagn RF Microw Med Biol 2:56–63CrossRef
go back to reference Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10:714–726PubMedCrossRef Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10:714–726PubMedCrossRef
go back to reference Lamme VAF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535PubMedCrossRef Lamme VAF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535PubMedCrossRef
go back to reference Liang H, Gong X, Chen M, Yan Y, Li W, Gilbert CD (2017) Interactions between feedback and lateral connections in the primary visual cortex. Proc Natl Acad Sci 114:8637PubMedPubMedCentralCrossRef Liang H, Gong X, Chen M, Yan Y, Li W, Gilbert CD (2017) Interactions between feedback and lateral connections in the primary visual cortex. Proc Natl Acad Sci 114:8637PubMedPubMedCentralCrossRef
go back to reference Limnuson K, Lu H, Chiel HJ, Mohseni P (2015) A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection. Analog Integr Circ Sig Process 82:457–470CrossRef Limnuson K, Lu H, Chiel HJ, Mohseni P (2015) A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection. Analog Integr Circ Sig Process 82:457–470CrossRef
go back to reference Liu Y et al (2020) Hierarchical representation for chromatic processing across macaque V1, V2, and V4. Neuron 108:538-550.e535PubMedCrossRef Liu Y et al (2020) Hierarchical representation for chromatic processing across macaque V1, V2, and V4. Neuron 108:538-550.e535PubMedCrossRef
go back to reference Liu X et al (2021) A Fully Integrated Sensor-Brain–Machine Interface System for Restoring Somatosensation. IEEE Sens J 21:4764–4775CrossRef Liu X et al (2021) A Fully Integrated Sensor-Brain–Machine Interface System for Restoring Somatosensation. IEEE Sens J 21:4764–4775CrossRef
go back to reference Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823PubMedCrossRef Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823PubMedCrossRef
go back to reference Logothetis NK et al (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291PubMedCrossRef Logothetis NK et al (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291PubMedCrossRef
go back to reference Lowery AJ et al (2015) Restoration of vision using wireless cortical implants: the Monash Vision Group project. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25–29 Aug. 2015, pp 1041–1044 Lowery AJ et al (2015) Restoration of vision using wireless cortical implants: the Monash Vision Group project. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25–29 Aug. 2015, pp 1041–1044
go back to reference Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107PubMedCrossRef Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107PubMedCrossRef
go back to reference Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605PubMedCrossRef Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605PubMedCrossRef
go back to reference Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334PubMedPubMedCentralCrossRef Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334PubMedPubMedCentralCrossRef
go back to reference McCreery DB, Agnew WF, Yuen TGH, Bullara LA (1988) Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng 16:463–481PubMedCrossRef McCreery DB, Agnew WF, Yuen TGH, Bullara LA (1988) Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng 16:463–481PubMedCrossRef
go back to reference McCreery D, Pikov V, Troyk PR (2010) Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng 7:036005PubMedPubMedCentralCrossRef McCreery D, Pikov V, Troyk PR (2010) Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng 7:036005PubMedPubMedCentralCrossRef
go back to reference McIntyre CC, Grill WM (2001) Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann Biomed Eng 29:227–235PubMedCrossRef McIntyre CC, Grill WM (2001) Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann Biomed Eng 29:227–235PubMedCrossRef
go back to reference Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373PubMedCrossRef Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373PubMedCrossRef
go back to reference Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162PubMedCrossRef Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162PubMedCrossRef
go back to reference Murphey DK, Yoshor D, Beauchamp Michael S (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18:216–220PubMedCrossRef Murphey DK, Yoshor D, Beauchamp Michael S (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18:216–220PubMedCrossRef
go back to reference Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D, Romo R (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci USA 106:5389–5393PubMedPubMedCentralCrossRef Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D, Romo R (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci USA 106:5389–5393PubMedPubMedCentralCrossRef
go back to reference Nasr S, Polimeni JR, Tootell RBH (2016) Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36:1841PubMedPubMedCentralCrossRef Nasr S, Polimeni JR, Tootell RBH (2016) Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36:1841PubMedPubMedCentralCrossRef
go back to reference Nathan SS, Sinha SR, Gordon B, Lesser RP, Thakor NV (1993) Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol 86:183–192PubMedCrossRef Nathan SS, Sinha SR, Gordon B, Lesser RP, Thakor NV (1993) Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol 86:183–192PubMedCrossRef
go back to reference Niketeghad S, Muralidharan A, Patel U, Dorn JD, Bonelli L, Greenberg RJ, Pouratian N (2019) Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject. J Neurosurg 132:2000–2007PubMedCrossRef Niketeghad S, Muralidharan A, Patel U, Dorn JD, Bonelli L, Greenberg RJ, Pouratian N (2019) Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject. J Neurosurg 132:2000–2007PubMedCrossRef
go back to reference Oxley TJ et al (2016) Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327PubMedCrossRef Oxley TJ et al (2016) Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327PubMedCrossRef
go back to reference Panetsos F, Sanchez-Jimenez A, Diaz-de Cerio E, Diaz-Guemes I, Sanchez F (2011) Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 5:84PubMedPubMedCentralCrossRef Panetsos F, Sanchez-Jimenez A, Diaz-de Cerio E, Diaz-Guemes I, Sanchez F (2011) Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 5:84PubMedPubMedCentralCrossRef
go back to reference Panetsos F, Diaz-de Cerio E, Sanchez-Jimenez A, Herrera-Rincon C (2009) Thalamic visual neuroprostheses: Comparison of visual percepts generated by natural stimulation of the eye and electrical stimulation of the thalamus. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering, 29 April-2 May 2009 pp 56–59 Panetsos F, Diaz-de Cerio E, Sanchez-Jimenez A, Herrera-Rincon C (2009) Thalamic visual neuroprostheses: Comparison of visual percepts generated by natural stimulation of the eye and electrical stimulation of the thalamus. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering, 29 April-2 May 2009 pp 56–59
go back to reference Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32:14915–14920PubMedPubMedCentralCrossRef Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32:14915–14920PubMedPubMedCentralCrossRef
go back to reference Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef
go back to reference Pavone L et al (2020) Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. J Neural Eng 17:036032PubMedCrossRef Pavone L et al (2020) Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. J Neural Eng 17:036032PubMedCrossRef
go back to reference Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696PubMedCrossRef Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696PubMedCrossRef
go back to reference Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci USA 104:7670–7675PubMedPubMedCentralCrossRef Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci USA 104:7670–7675PubMedPubMedCentralCrossRef
go back to reference Pollen DA (1977) Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol 14:67–86PubMedCrossRef Pollen DA (1977) Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol 14:67–86PubMedCrossRef
go back to reference Rodriguez-Oroz MC et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249PubMedCrossRef Rodriguez-Oroz MC et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249PubMedCrossRef
go back to reference Rokers B, Cormack LK, Huk AC (2009) Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nat Neurosci 12:1050–1055PubMedCrossRef Rokers B, Cormack LK, Huk AC (2009) Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nat Neurosci 12:1050–1055PubMedCrossRef
go back to reference Rosa MGP (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498PubMedCrossRef Rosa MGP (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498PubMedCrossRef
go back to reference Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil Trans R Soc B Biol Sci 360:665–691CrossRef Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil Trans R Soc B Biol Sci 360:665–691CrossRef
go back to reference Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177PubMedCrossRef Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177PubMedCrossRef
go back to reference Schalk G et al (2017) Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci USA 114:12285–12290PubMedPubMedCentralCrossRef Schalk G et al (2017) Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci USA 114:12285–12290PubMedPubMedCentralCrossRef
go back to reference Schiller PH, Slocum WM, Kwak MC, Kendall GL, Tehovnik EJ (2011) New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated. Proc Natl Acad Sci 108:17809PubMedPubMedCentralCrossRef Schiller PH, Slocum WM, Kwak MC, Kendall GL, Tehovnik EJ (2011) New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated. Proc Natl Acad Sci 108:17809PubMedPubMedCentralCrossRef
go back to reference Schira MM, Tyler CW, Rosa MGP (2012) Brain mapping: The (un)folding of striate cortex. Curr Biol 22:R1051–R1053PubMedCrossRef Schira MM, Tyler CW, Rosa MGP (2012) Brain mapping: The (un)folding of striate cortex. Curr Biol 22:R1051–R1053PubMedCrossRef
go back to reference Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain 119:507–522PubMedCrossRef Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain 119:507–522PubMedCrossRef
go back to reference Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592PubMedCrossRef Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592PubMedCrossRef
go back to reference Silvanto J, Bona S, Cattaneo Z (2017) Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 363:134–141PubMedCrossRef Silvanto J, Bona S, Cattaneo Z (2017) Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 363:134–141PubMedCrossRef
go back to reference Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128PubMedCrossRef Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128PubMedCrossRef
go back to reference Smith DT, Ball K, Ellison A (2012) Inhibition of return impairs phosphene detection. J Cogn Neurosci 24:2262–2267PubMedCrossRef Smith DT, Ball K, Ellison A (2012) Inhibition of return impairs phosphene detection. J Cogn Neurosci 24:2262–2267PubMedCrossRef
go back to reference Spencer TC, Fallon JB, Shivdasani MN (2018) Creating virtual electrodes with 2D current steering. J Neural Eng 15:035002PubMedCrossRef Spencer TC, Fallon JB, Shivdasani MN (2018) Creating virtual electrodes with 2D current steering. J Neural Eng 15:035002PubMedCrossRef
go back to reference Srivastava NR, Troyk PR, Towle VL, Curry D, Schmidt E, Kufta C, Dagnelie G (2007) Estimating Phosphene Maps for Psychophysical Experiments used in Testing a Cortical Visual Prosthesis Device. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2–5 May 2007, pp 130–133 Srivastava NR, Troyk PR, Towle VL, Curry D, Schmidt E, Kufta C, Dagnelie G (2007) Estimating Phosphene Maps for Psychophysical Experiments used in Testing a Cortical Visual Prosthesis Device. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2–5 May 2007, pp 130–133
go back to reference Tanaka Y, Nomoto T, Shiki T, Sakata Y, Shimada Y, Hayashida Y, Yagi T (2019) Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J Neural Eng 16:036007PubMedCrossRef Tanaka Y, Nomoto T, Shiki T, Sakata Y, Shimada Y, Hayashida Y, Yagi T (2019) Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J Neural Eng 16:036007PubMedCrossRef
go back to reference Tangutooru SM, Yoon WJ, Troy JB (2014) Early design considerations for a thalamic visual prosthesis to treat blindness resulting from glaucoma. In: 2014 2nd Middle East Conference on Biomedical Engineering, 17-20 Feb. 2014, pp 249–252 Tangutooru SM, Yoon WJ, Troy JB (2014) Early design considerations for a thalamic visual prosthesis to treat blindness resulting from glaucoma. In: 2014 2nd Middle East Conference on Biomedical Engineering, 17-20 Feb. 2014, pp 249–252
go back to reference Tehovnik EJ, Slocum WM (2007) Phosphene induction by microstimulation of macaque V1. Brain Res Rev 53:337–343PubMedCrossRef Tehovnik EJ, Slocum WM (2007) Phosphene induction by microstimulation of macaque V1. Brain Res Rev 53:337–343PubMedCrossRef
go back to reference Tehovnik EJ, Slocum WM, Schiller PH (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur J Neurosci 17:870–878PubMedCrossRef Tehovnik EJ, Slocum WM, Schiller PH (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur J Neurosci 17:870–878PubMedCrossRef
go back to reference Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521PubMedCrossRef Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521PubMedCrossRef
go back to reference Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48:901–911PubMedCrossRef Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48:901–911PubMedCrossRef
go back to reference Ts’o DY, Roe AW, Gilbert CD (2001) A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res 41:1333–1349PubMedCrossRef Ts’o DY, Roe AW, Gilbert CD (2001) A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res 41:1333–1349PubMedCrossRef
go back to reference Van Der Aa H, Comijs H, Penninx B, Van Rens G, Van Nispen R (2015) Major depressive and anxiety disorders in visually impaired older adults. Invest Ophthalmol vis Sci 56:849–854PubMedCrossRef Van Der Aa H, Comijs H, Penninx B, Van Rens G, Van Nispen R (2015) Major depressive and anxiety disorders in visually impaired older adults. Invest Ophthalmol vis Sci 56:849–854PubMedCrossRef
go back to reference Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner J (ed) The visual neurosciences. MIT Press, Cambridge, pp 507–521 Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner J (ed) The visual neurosciences. MIT Press, Cambridge, pp 507–521
go back to reference Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RBH, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378PubMedCrossRef Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RBH, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378PubMedCrossRef
go back to reference Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605PubMedPubMedCentralCrossRef Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605PubMedPubMedCentralCrossRef
go back to reference Vurro M, Crowell AM, Pezaris JS (2014) Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci 8:816PubMedPubMedCentralCrossRef Vurro M, Crowell AM, Pezaris JS (2014) Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci 8:816PubMedPubMedCentralCrossRef
go back to reference Weinreb SF, Yang L, Kaskhedikar G, Sadeghi R, Troyk P, Dagnelie G (2019) Phosphene mapping for intracortical visual prostheses. Invest Ophthalmol vis Sci 60:4378–4378 Weinreb SF, Yang L, Kaskhedikar G, Sadeghi R, Troyk P, Dagnelie G (2019) Phosphene mapping for intracortical visual prostheses. Invest Ophthalmol vis Sci 60:4378–4378
go back to reference Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29:1115–1156PubMedCrossRef Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29:1115–1156PubMedCrossRef
go back to reference Woolnough O et al (2021) Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat Hum Behav 5:389–398PubMedCrossRef Woolnough O et al (2021) Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat Hum Behav 5:389–398PubMedCrossRef
go back to reference World Health Organization (2019) World report on vision. World Health Organization, Geneva World Health Organization (2019) World report on vision. World Health Organization, Geneva
go back to reference Wurm LH, Legge GE, Isenberg LM, Luebker A (1993) Color improves object recognition in normal and low vision. J Exp Psychol Hum Percept Perform 19:899–911PubMedCrossRef Wurm LH, Legge GE, Isenberg LM, Luebker A (1993) Color improves object recognition in normal and low vision. J Exp Psychol Hum Percept Perform 19:899–911PubMedCrossRef
go back to reference Xiao Y, Felleman DJ (2004) Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. Proc Natl Acad Sci USA 101:7147PubMedPubMedCentralCrossRef Xiao Y, Felleman DJ (2004) Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. Proc Natl Acad Sci USA 101:7147PubMedPubMedCentralCrossRef
go back to reference Xiao Y, Wang Y, Felleman DJ (2003) A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–539PubMedCrossRef Xiao Y, Wang Y, Felleman DJ (2003) A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–539PubMedCrossRef
go back to reference Xiao Y, Casti A, Xiao J, Kaplan E (2007) Hue maps in primate striate cortex. Neuroimage 35:771–786PubMedCrossRef Xiao Y, Casti A, Xiao J, Kaplan E (2007) Hue maps in primate striate cortex. Neuroimage 35:771–786PubMedCrossRef
go back to reference Yoshor D et al (2018) 206 Dynamic stimulation of human visual cortex produces useful percepts of visual forms in sighted and blind subjects. Neurosurgery 65:117–117CrossRef Yoshor D et al (2018) 206 Dynamic stimulation of human visual cortex produces useful percepts of visual forms in sighted and blind subjects. Neurosurgery 65:117–117CrossRef
Metadata
Title
Neurophysiological considerations for visual implants
Authors
Sabrina J. Meikle
Yan T. Wong
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02417-2

Other articles of this Issue 4/2022

Brain Structure and Function 4/2022 Go to the issue