Skip to main content
Top
Published in: Brain Structure and Function 7/2020

Open Access 01-09-2020 | Original Article

A common neural substrate for processing scenes and egomotion-compatible visual motion

Authors: Valentina Sulpizio, Gaspare Galati, Patrizia Fattori, Claudio Galletti, Sabrina Pitzalis

Published in: Brain Structure and Function | Issue 7/2020

Login to get access

Abstract

Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment.
Appendix
Available only for authorised users
Literature
go back to reference Amedi A, Malach R, Pascual-Leone A (2005) Negative BOLD differentiates visual imagery and perception. Neuron 48(5):859–872PubMed Amedi A, Malach R, Pascual-Leone A (2005) Negative BOLD differentiates visual imagery and perception. Neuron 48(5):859–872PubMed
go back to reference Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organization of human ventral visual cortex. J Neurosci 29(34):10638–10652PubMedPubMedCentral Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organization of human ventral visual cortex. J Neurosci 29(34):10638–10652PubMedPubMedCentral
go back to reference Bacon-Macé N, Kirchner H, Fabre-Thorpe M, Thorpe SJ (2007) Effects of task requirements on rapid natural scene processing: from common sensory encoding to distinct decisional mechanisms. J Exp Psychol Hum Percept Perform 33:1013–1026PubMed Bacon-Macé N, Kirchner H, Fabre-Thorpe M, Thorpe SJ (2007) Effects of task requirements on rapid natural scene processing: from common sensory encoding to distinct decisional mechanisms. J Exp Psychol Hum Percept Perform 33:1013–1026PubMed
go back to reference Baldassano C, Beck D, Fei-Fei L (2013) Differential connectivity within the parahippocampal place area. NeuroImage 75:228–237PubMed Baldassano C, Beck D, Fei-Fei L (2013) Differential connectivity within the parahippocampal place area. NeuroImage 75:228–237PubMed
go back to reference Boccia M, Sulpizio V, Teghil A, Palermo L, Piccardi L, Galati G, Guariglia C (2019) The dynamic contribution of the high-level visual cortex to imagery and perception. Hum Brain Mapp 40:2449–2463PubMedPubMedCentral Boccia M, Sulpizio V, Teghil A, Palermo L, Piccardi L, Galati G, Guariglia C (2019) The dynamic contribution of the high-level visual cortex to imagery and perception. Hum Brain Mapp 40:2449–2463PubMedPubMedCentral
go back to reference Brewer A, Barton B (2012) Visual field map organization in human visual cortex. In: Molotchnikoff S, Rouat J (eds) Visual cortex—current status and perspectives. Institute for New Technologies, Maastricht, pp 29–60 Brewer A, Barton B (2012) Visual field map organization in human visual cortex. In: Molotchnikoff S, Rouat J (eds) Visual cortex—current status and perspectives. Institute for New Technologies, Maastricht, pp 29–60
go back to reference Britten KH (2008) Mechanisms of self-motion perception. Annu Rev Neurosci 31:389–410PubMed Britten KH (2008) Mechanisms of self-motion perception. Annu Rev Neurosci 31:389–410PubMed
go back to reference Buttner U, Buettner U (1978) Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153:392–397PubMed Buttner U, Buettner U (1978) Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153:392–397PubMed
go back to reference Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535PubMed Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535PubMed
go back to reference Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292PubMed Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292PubMed
go back to reference Epstein R, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693PubMed Epstein R, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693PubMed
go back to reference Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMed Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMed
go back to reference Galati G, Pelle G, Berthoz A, Committeri G (2010) Multiple reference frames used by the human brain for spatial perception and memory. Exp Brain Res 206:109–120PubMed Galati G, Pelle G, Berthoz A, Committeri G (2010) Multiple reference frames used by the human brain for spatial perception and memory. Exp Brain Res 206:109–120PubMed
go back to reference Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727PubMed Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727PubMed
go back to reference Galletti C, Battaglini PP, Fattori P (1990) “Real-motion” cells in area V3A of macaque visual cortex. Exp Brain Res 82(1):67–76PubMed Galletti C, Battaglini PP, Fattori P (1990) “Real-motion” cells in area V3A of macaque visual cortex. Exp Brain Res 82(1):67–76PubMed
go back to reference Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588PubMed Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588PubMed
go back to reference Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston
go back to reference Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL et al (2013) The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80:105–124PubMed Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL et al (2013) The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80:105–124PubMed
go back to reference Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentral Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentral
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed
go back to reference Greene MR, Oliva A (2009) The briefest of glances: the time course of natural scene understanding. Psychol Sci 20:464–472PubMed Greene MR, Oliva A (2009) The briefest of glances: the time course of natural scene understanding. Psychol Sci 20:464–472PubMed
go back to reference Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Cuturi LF, MacNeilage PR, Smith AT (2016) Multisensory integration in self motion perception. Multisens Res 29:525–556 Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Cuturi LF, MacNeilage PR, Smith AT (2016) Multisensory integration in self motion perception. Multisens Res 29:525–556
go back to reference Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328PubMedPubMedCentral Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328PubMedPubMedCentral
go back to reference Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041PubMed Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041PubMed
go back to reference Huang RS, Sereno MI (2013) Bottom-up retinotopic organization supports top-down mental imagery. Open Neuroimaging J 7:58–67 Huang RS, Sereno MI (2013) Bottom-up retinotopic organization supports top-down mental imagery. Open Neuroimaging J 7:58–67
go back to reference Ino T, Doi T, Hirose S, Kimura T, Ito J, Fukuyama H (2007) Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex 43:248–254PubMed Ino T, Doi T, Hirose S, Kimura T, Ito J, Fukuyama H (2007) Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex 43:248–254PubMed
go back to reference Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95:862–881PubMed Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95:862–881PubMed
go back to reference Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539PubMed Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539PubMed
go back to reference Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedPubMedCentral Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedPubMedCentral
go back to reference Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R, Ungerleider LG, Tootell RBH (2011) Scene-selective cortical regions in human and nonhuman primates. J Neurosci 31(39):13771–13785PubMedPubMedCentral Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R, Ungerleider LG, Tootell RBH (2011) Scene-selective cortical regions in human and nonhuman primates. J Neurosci 31(39):13771–13785PubMedPubMedCentral
go back to reference Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage 47:1747–1756PubMed Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage 47:1747–1756PubMed
go back to reference Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G et al (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973PubMedPubMedCentral Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G et al (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973PubMedPubMedCentral
go back to reference Serra C, Galletti C, Di Marco S, Fattori P, Galati G, Sulpizio V, Pitzalis S (2019) Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 40:3174–3191PubMedPubMedCentral Serra C, Galletti C, Di Marco S, Fattori P, Galati G, Sulpizio V, Pitzalis S (2019) Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 40:3174–3191PubMedPubMedCentral
go back to reference Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedPubMedCentral Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedPubMedCentral
go back to reference Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078PubMedPubMedCentral Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078PubMedPubMedCentral
go back to reference Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817PubMedPubMedCentral Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817PubMedPubMedCentral
go back to reference Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220:3307–3321PubMed Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220:3307–3321PubMed
go back to reference Tullo MG, Sulpizio V, Boccia M, Guariglia C, Galati G. (2018) Individual differences in mental imagery are predicted by the intrinsic functional architecture of scene-selective regions. In: Proceedings of congress of the SEPEX, SEPNECA and AIP experimental, Madrid Tullo MG, Sulpizio V, Boccia M, Guariglia C, Galati G. (2018) Individual differences in mental imagery are predicted by the intrinsic functional architecture of scene-selective regions. In: Proceedings of congress of the SEPEX, SEPNECA and AIP experimental, Madrid
go back to reference Tyler CW, Likova LT, Kontsevich LL, Wade AR (2006) The specificity of cortical region KO to depth structure. NeuroImage 30:228–238PubMed Tyler CW, Likova LT, Kontsevich LL, Wade AR (2006) The specificity of cortical region KO to depth structure. NeuroImage 30:228–238PubMed
go back to reference Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586 Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586
go back to reference Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701PubMed Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701PubMed
go back to reference Vinberg J, Grill-Spector K (2008) Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. J Neurophysiol 99:1380–1393PubMed Vinberg J, Grill-Spector K (2008) Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. J Neurophysiol 99:1380–1393PubMed
go back to reference Wang L, Mruczek RE, Arcaro MJ et al (2015) Probabilistic maps of visual topography in human cortex. Cereb Cortex 25:3911–3931PubMed Wang L, Mruczek RE, Arcaro MJ et al (2015) Probabilistic maps of visual topography in human cortex. Cereb Cortex 25:3911–3931PubMed
Metadata
Title
A common neural substrate for processing scenes and egomotion-compatible visual motion
Authors
Valentina Sulpizio
Gaspare Galati
Patrizia Fattori
Claudio Galletti
Sabrina Pitzalis
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 7/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02112-8

Other articles of this Issue 7/2020

Brain Structure and Function 7/2020 Go to the issue