Skip to main content
Top
Published in: Brain Structure and Function 3/2018

01-04-2018 | Original Article

Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition

Authors: Xin Hao, Xu Wang, Yiying Song, Xiangzhen Kong, Jia Liu

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

Effectively recognizing surroundings is a critical ability in human navigation. Previous neuroimaging studies have depicted distributed brain regions underpinning spatial navigation, but little is known about how these regions are formed into the navigation network (NN) supporting scene recognition. In this study, we addressed this issue by using a voxel-based global functional connectivity method to characterize the integration (i.e., within-network connectivity, WNC) of the NN and its segregation (i.e., between-network connectivity, BNC) from non-NN networks. We found that the majority of the voxels in the NN showed a stronger WNC than BNC, indicating the encapsulation of the NN. Importantly, individuals with stronger WNC and weaker BNC in the left hippocampus (Hipp) and intraparietal sulcus (IPS) performed better in scene recognition, suggesting that the left Hipp and IPS were involved in scene recognition by both integrating regions in the NN and separating the NN from non-NN networks. Further analyses showed that the integration of these two regions in the NN serves different functions, that is, while the WNC of the left Hipp was only related to scene recognition, the WNC of the left IPS was also related to the general executive control function of attention. In short, our study demonstrated the dual roles of the Hipp and IPS in integration and segregation of the NN to support scene recognition, suggesting that scene recognition involves not only regions specialized in spatial navigation, but also those with general functions.
Appendix
Available only for authorised users
Literature
go back to reference Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMed Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMed
go back to reference Aly M, Ranganath C, Yonelinas AP (2013) Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron 78(6):1127–1137CrossRefPubMedPubMedCentral Aly M, Ranganath C, Yonelinas AP (2013) Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron 78(6):1127–1137CrossRefPubMedPubMedCentral
go back to reference Baldassano C, Esteva A, Fei-Fei L, Beck DM (2016) Two distinct scene-processing networks connecting vision and memory. eNeuro 3(5):e0178-16CrossRef Baldassano C, Esteva A, Fei-Fei L, Beck DM (2016) Two distinct scene-processing networks connecting vision and memory. eNeuro 3(5):e0178-16CrossRef
go back to reference Bird CM, Vargha-Khadem F, Burgess N (2008) Impaired memory for scenes but not faces in developmental hippocampal amnesia: a case study. Neuropsychologia 46(4):1050–1059CrossRefPubMed Bird CM, Vargha-Khadem F, Burgess N (2008) Impaired memory for scenes but not faces in developmental hippocampal amnesia: a case study. Neuropsychologia 46(4):1050–1059CrossRefPubMed
go back to reference Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739CrossRefPubMedPubMedCentral Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739CrossRefPubMedPubMedCentral
go back to reference Boccia M, Sulpizio V, Nemmi F, Guariglia C, Galati G (2017) Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Struct Funct 222(4):1945–1957CrossRefPubMed Boccia M, Sulpizio V, Nemmi F, Guariglia C, Galati G (2017) Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Struct Funct 222(4):1945–1957CrossRefPubMed
go back to reference Brown TI, Carr VA, LaRocque KF, Favila SE, Gordon AM, Bowles B, Bailenson JN, Wagner AD (2016) Prospective representation of navigational goals in the human hippocampus. Science 352(6291):1323–1326CrossRefPubMed Brown TI, Carr VA, LaRocque KF, Favila SE, Gordon AM, Bowles B, Bailenson JN, Wagner AD (2016) Prospective representation of navigational goals in the human hippocampus. Science 352(6291):1323–1326CrossRefPubMed
go back to reference Cole MW, Yarkoni T, Repovš G, Anticevic A, Braver TS (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32(26):8988–8999CrossRefPubMedPubMedCentral Cole MW, Yarkoni T, Repovš G, Anticevic A, Braver TS (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32(26):8988–8999CrossRefPubMedPubMedCentral
go back to reference Dilks DD, Julian JB, Paunov AM, Kanwisher N (2013) The occipital place area is causally and selectively involved in scene perception. J Neurosci 33(4):1331–1336CrossRefPubMedPubMedCentral Dilks DD, Julian JB, Paunov AM, Kanwisher N (2013) The occipital place area is causally and selectively involved in scene perception. J Neurosci 33(4):1331–1336CrossRefPubMedPubMedCentral
go back to reference Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci USA 105(15):5915–5920CrossRefPubMedPubMedCentral Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci USA 105(15):5915–5920CrossRefPubMedPubMedCentral
go back to reference Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361CrossRefPubMedPubMedCentral Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361CrossRefPubMedPubMedCentral
go back to reference Durston S, Davidson M, Thomas K, Worden M, Tottenham N, Martinez A, Watts R, Ulug A, Casey B (2003) Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20(4):2135–2141CrossRefPubMed Durston S, Davidson M, Thomas K, Worden M, Tottenham N, Martinez A, Watts R, Ulug A, Casey B (2003) Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20(4):2135–2141CrossRefPubMed
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed
go back to reference Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601CrossRefPubMed Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601CrossRefPubMed
go back to reference Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149CrossRef Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149CrossRef
go back to reference Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381CrossRefPubMedPubMedCentral Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381CrossRefPubMedPubMedCentral
go back to reference Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentral Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentral
go back to reference Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA 110(36):E3435–E3444CrossRefPubMedPubMedCentral Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA 110(36):E3435–E3444CrossRefPubMedPubMedCentral
go back to reference Hao X, Huang Y, Li X, Song Y, Kong X, Wang X, Yang Z, Zhen Z, Liu J (2016) Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study. Brain Behav 6(12):e00572CrossRefPubMedPubMedCentral Hao X, Huang Y, Li X, Song Y, Kong X, Wang X, Yang Z, Zhen Z, Liu J (2016) Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study. Brain Behav 6(12):e00572CrossRefPubMedPubMedCentral
go back to reference Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37(5):877–888CrossRefPubMed Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37(5):877–888CrossRefPubMed
go back to reference Hartley T, Bird CM, Chan D, Cipolotti L, Husain M, Vargha-Khadem F, Burgess N (2007) The hippocampus is required for short-term topographical memory in humans. Hippocampus 17(1):34–48CrossRefPubMedPubMedCentral Hartley T, Bird CM, Chan D, Cipolotti L, Husain M, Vargha-Khadem F, Burgess N (2007) The hippocampus is required for short-term topographical memory in humans. Hippocampus 17(1):34–48CrossRefPubMedPubMedCentral
go back to reference Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, Poldrack RA (2014) Predicting risky choices from brain activity patterns. Proc Natl Acad Sci USA 111(7):2470–2475CrossRefPubMedPubMedCentral Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, Poldrack RA (2014) Predicting risky choices from brain activity patterns. Proc Natl Acad Sci USA 111(7):2470–2475CrossRefPubMedPubMedCentral
go back to reference Hodgetts C, Shine J, Lawrence A, Downing P, Graham K (2016) Evidencing a place for the hippocampus within the core scene processing network. Hum Brain Mapp 37:3779–3794CrossRefPubMedPubMedCentral Hodgetts C, Shine J, Lawrence A, Downing P, Graham K (2016) Evidencing a place for the hippocampus within the core scene processing network. Hum Brain Mapp 37:3779–3794CrossRefPubMedPubMedCentral
go back to reference Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, Buckner RL (2012) Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32(50):18087–18100CrossRefPubMedPubMedCentral Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, Buckner RL (2012) Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32(50):18087–18100CrossRefPubMedPubMedCentral
go back to reference Huang L, Song Y, Li J, Zhen Z, Yang Z, Liu J (2014) Individual differences in cortical face selectivity predict behavioral performance in face recognition. Front Hum Neurosci 8:483CrossRefPubMedPubMedCentral Huang L, Song Y, Li J, Zhen Z, Yang Z, Liu J (2014) Individual differences in cortical face selectivity predict behavioral performance in face recognition. Front Hum Neurosci 8:483CrossRefPubMedPubMedCentral
go back to reference Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed
go back to reference Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMed Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMed
go back to reference Kong F, Chen Z, Xue S, Wang X, Liu J (2015) Mother’s but not father’s education predicts general fluid intelligence in emerging adulthood: behavioral and neuroanatomical evidence. Hum Brain Mapp 36(11):4582–4591CrossRefPubMed Kong F, Chen Z, Xue S, Wang X, Liu J (2015) Mother’s but not father’s education predicts general fluid intelligence in emerging adulthood: behavioral and neuroanatomical evidence. Hum Brain Mapp 36(11):4582–4591CrossRefPubMed
go back to reference Kong X-Z, Wang X, Pu Y, Huang L, Hao X, Zhen Z, Liu J (2017a) Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222(2):749–764CrossRefPubMed Kong X-Z, Wang X, Pu Y, Huang L, Hao X, Zhen Z, Liu J (2017a) Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222(2):749–764CrossRefPubMed
go back to reference Kong X, Song Y, Zhen Z, Liu J (2017b) Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cereb Cortex 27(2):1326–1336PubMed Kong X, Song Y, Zhen Z, Liu J (2017b) Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cereb Cortex 27(2):1326–1336PubMed
go back to reference Lauritzen T, D’Esposito M Functional networks underlying top-down visual spatial attention in the human brain. In: Soc. Neurosci. Abstr, 2007 Lauritzen T, D’Esposito M Functional networks underlying top-down visual spatial attention in the human brain. In: Soc. Neurosci. Abstr, 2007
go back to reference Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45PubMedPubMedCentral Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45PubMedPubMedCentral
go back to reference Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416(6876):90–94CrossRefPubMed Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416(6876):90–94CrossRefPubMed
go back to reference Lew AR (2011) Looking beyond the boundaries: time to put landmarks back on the cognitive map? Psychol Bull 137(3):484CrossRefPubMed Lew AR (2011) Looking beyond the boundaries: time to put landmarks back on the cognitive map? Psychol Bull 137(3):484CrossRefPubMed
go back to reference Maguire E (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238CrossRefPubMed Maguire E (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238CrossRefPubMed
go back to reference Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924CrossRefPubMed Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924CrossRefPubMed
go back to reference Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403CrossRefPubMedPubMedCentral Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403CrossRefPubMedPubMedCentral
go back to reference Marchette SA, Vass LK, Ryan J, Epstein RA (2014) Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nature Neurosci 17(11):1598–1606CrossRefPubMedPubMedCentral Marchette SA, Vass LK, Ryan J, Epstein RA (2014) Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nature Neurosci 17(11):1598–1606CrossRefPubMedPubMedCentral
go back to reference Marchette SA, Vass LK, Ryan J, Epstein RA (2015) Outside looking in: landmark generalization in the human navigational system. J Neurosci 35(44):14896–14908CrossRefPubMedPubMedCentral Marchette SA, Vass LK, Ryan J, Epstein RA (2015) Outside looking in: landmark generalization in the human navigational system. J Neurosci 35(44):14896–14908CrossRefPubMedPubMedCentral
go back to reference Morgan LK, MacEvoy SP, Aguirre GK, Epstein RA (2011) Distances between real-world locations are represented in the human hippocampus. J Neurosci 31(4):1238–1245CrossRefPubMedPubMedCentral Morgan LK, MacEvoy SP, Aguirre GK, Epstein RA (2011) Distances between real-world locations are represented in the human hippocampus. J Neurosci 31(4):1238–1245CrossRefPubMedPubMedCentral
go back to reference Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation ability dependent neural activation in the human brain: an fMRI study. Neurosci Res 55(4):361–369CrossRefPubMed Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation ability dependent neural activation in the human brain: an fMRI study. Neurosci Res 55(4):361–369CrossRefPubMed
go back to reference O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175CrossRefPubMed O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175CrossRefPubMed
go back to reference Peschke C, Köster R, Korsch M, Frühholz S, Thiel CM, Herrmann M, Hilgetag CC (2016) Selective perturbation of cognitive conflict in the human brain—a combined fMRI and rTMS study. Sci Rep 6:38700CrossRefPubMedPubMedCentral Peschke C, Köster R, Korsch M, Frühholz S, Thiel CM, Herrmann M, Hilgetag CC (2016) Selective perturbation of cognitive conflict in the human brain—a combined fMRI and rTMS study. Sci Rep 6:38700CrossRefPubMedPubMedCentral
go back to reference Poppenk J, Evensmoen HR, Moscovitch M, Nadel L (2013) Long-axis specialization of the human hippocampus. Trends Cogn Sci 17(5):230–240CrossRefPubMed Poppenk J, Evensmoen HR, Moscovitch M, Nadel L (2013) Long-axis specialization of the human hippocampus. Trends Cogn Sci 17(5):230–240CrossRefPubMed
go back to reference Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRefPubMed Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRefPubMed
go back to reference Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMed Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMed
go back to reference Raven JC, Court JH (1998) Raven’s progressive matrices and vocabulary scales. Oxford Psychologists Press, Oxford Raven JC, Court JH (1998) Raven’s progressive matrices and vocabulary scales. Oxford Psychologists Press, Oxford
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed
go back to reference Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus 25(9):1028–1041CrossRefPubMedPubMedCentral Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus 25(9):1028–1041CrossRefPubMedPubMedCentral
go back to reference Schindler A, Bartels A (2013) Parietal cortex codes for egocentric space beyond the field of view. Curr Biol 23(2):177–182CrossRefPubMed Schindler A, Bartels A (2013) Parietal cortex codes for egocentric space beyond the field of view. Curr Biol 23(2):177–182CrossRefPubMed
go back to reference Silson EH, Steel AD, Baker CI (2016) Scene-selectivity and retinotopy in medial parietal cortex. Front Hum Neurosci 10:1–17CrossRef Silson EH, Steel AD, Baker CI (2016) Scene-selectivity and retinotopy in medial parietal cortex. Front Hum Neurosci 10:1–17CrossRef
go back to reference Soutschek A, Taylor PC, Müller HJ, Schubert T (2013) Dissociable networks control conflict during perception and response selection: a transcranial magnetic stimulation Study. J Neurosci 33(13):5647–5654CrossRefPubMed Soutschek A, Taylor PC, Müller HJ, Schubert T (2013) Dissociable networks control conflict during perception and response selection: a transcranial magnetic stimulation Study. J Neurosci 33(13):5647–5654CrossRefPubMed
go back to reference Spelke ES, Lee SA (2012) Core systems of geometry in animal minds. Philos Trans R Soc B 367(1603):2784–2793CrossRef Spelke ES, Lee SA (2012) Core systems of geometry in animal minds. Philos Trans R Soc B 367(1603):2784–2793CrossRef
go back to reference Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840CrossRefPubMed Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840CrossRefPubMed
go back to reference Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171CrossRefPubMed Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171CrossRefPubMed
go back to reference Sulpizio V, Boccia M, Guariglia C, Galati G (2016) Functional connectivity between posterior hippocampus and retrosplenial complex predicts individual differences in navigational ability. Hippocampus 26(7):841–847CrossRefPubMed Sulpizio V, Boccia M, Guariglia C, Galati G (2016) Functional connectivity between posterior hippocampus and retrosplenial complex predicts individual differences in navigational ability. Hippocampus 26(7):841–847CrossRefPubMed
go back to reference Summerfield JJ, Hassabis D, Maguire EA (2010) Differential engagement of brain regions within a ‘core’network during scene construction. Neuropsychologia 48(5):1501–1509CrossRefPubMedPubMedCentral Summerfield JJ, Hassabis D, Maguire EA (2010) Differential engagement of brain regions within a ‘core’network during scene construction. Neuropsychologia 48(5):1501–1509CrossRefPubMedPubMedCentral
go back to reference Taylor KJ, Henson RN, Graham KS (2007) Recognition memory for faces and scenes in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia 45(11):2428–2438CrossRefPubMed Taylor KJ, Henson RN, Graham KS (2007) Recognition memory for faces and scenes in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia 45(11):2428–2438CrossRefPubMed
go back to reference Uttal DH, Sandstrom LB, Newcombe NS (2006) One hidden object, two spatial codes: young children’s use of relational and vector coding. J Cogn Dev 7(4):503–525CrossRef Uttal DH, Sandstrom LB, Newcombe NS (2006) One hidden object, two spatial codes: young children’s use of relational and vector coding. J Cogn Dev 7(4):503–525CrossRef
go back to reference Wang X, Song Y, Zhen Z, Liu J (2016a) Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp 37:1930–1940CrossRefPubMed Wang X, Song Y, Zhen Z, Liu J (2016a) Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp 37:1930–1940CrossRefPubMed
go back to reference Wang X, Zhen Z, Song Y, Huang L, Kong X, Liu J (2016b) The hierarchical structure of the face network revealed by its functional connectivity pattern. J Neurosci 36(3):890–900CrossRefPubMed Wang X, Zhen Z, Song Y, Huang L, Kong X, Liu J (2016b) The hierarchical structure of the face network revealed by its functional connectivity pattern. J Neurosci 36(3):890–900CrossRefPubMed
go back to reference Wegman J, Tyborowska A, Janzen G (2014) Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study. Hippocampus 24(7):853–868CrossRefPubMed Wegman J, Tyborowska A, Janzen G (2014) Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study. Hippocampus 24(7):853–868CrossRefPubMed
go back to reference Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci USA 105(39):14755–14762CrossRefPubMedPubMedCentral Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci USA 105(39):14755–14762CrossRefPubMedPubMedCentral
go back to reference Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14(3):138–146CrossRefPubMed Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14(3):138–146CrossRefPubMed
go back to reference Woolley DG, Mantini D, Coxon JP, D’Hooge R, Swinnen SP, Wenderoth N (2015) Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Hum Brain Mapp 36(4):1265–1277CrossRefPubMed Woolley DG, Mantini D, Coxon JP, D’Hooge R, Swinnen SP, Wenderoth N (2015) Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Hum Brain Mapp 36(4):1265–1277CrossRefPubMed
go back to reference Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670CrossRefPubMedPubMedCentral Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670CrossRefPubMedPubMedCentral
go back to reference Zeidman P, Mullally SL, Maguire EA (2015) Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb Cortex 25(10):3836–3855CrossRefPubMed Zeidman P, Mullally SL, Maguire EA (2015) Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb Cortex 25(10):3836–3855CrossRefPubMed
go back to reference Zhen Z, Yang Z, Huang L, Kong X, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25CrossRefPubMed Zhen Z, Yang Z, Huang L, Kong X, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25CrossRefPubMed
go back to reference Zhen Z, Kong XZ, Huang L, Yang Z, Wang X, Hao X, Huang T, Song Y, Liu J (2017) Quantifying the variability of scene-selective regions: interindividual, interhemispheric, and sex differences. Hum Brain Mapp 38(4):2260–2275CrossRefPubMed Zhen Z, Kong XZ, Huang L, Yang Z, Wang X, Hao X, Huang T, Song Y, Liu J (2017) Quantifying the variability of scene-selective regions: interindividual, interhemispheric, and sex differences. Hum Brain Mapp 38(4):2260–2275CrossRefPubMed
Metadata
Title
Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition
Authors
Xin Hao
Xu Wang
Yiying Song
Xiangzhen Kong
Jia Liu
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1564-2

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue