Skip to main content
Top
Published in: Brain Structure and Function 3/2018

01-04-2018 | Original Article

High-resolution language mapping of Broca’s region with transcranial magnetic stimulation

Authors: Katrin Sakreida, Inga Lange, Klaus Willmes, Stefan Heim, Ferdinand Binkofski, Hans Clusmann, Georg Neuloh

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

Broca’s region, corresponding roughly to cytoarchitectonic areas 44 and 45 in the inferior frontal cortex, holds a multifunctional role in language processing, as shown, e.g., by functional imaging data. Neuro-navigated transcranial magnetic stimulation (TMS) enables complementary non-invasive mapping of cortical functions with high spatial resolution. Here, we report on detailed TMS language mapping of Broca’s region in 12 healthy participants. The test protocol with an object naming task was adapted for high-resolution and semi-quantitative mapping of TMS-induced effects on speech and language performance. Hierarchical cluster analysis of normalized ratings of error frequency and severity revealed a clear focus of TMS impact at dorso-posterior target sites, close to the inferior frontal junction. Adjacent clusters of moderate and slightly affected stimulation sites yielded a posterosuperior-to-anteroinferior gradient of TMS susceptibility. Our findings indicate that the part of Broca’s region most susceptible to TMS-induced language inhibition in object naming is located in the dorsal area 44.
Appendix
Available only for authorised users
Literature
go back to reference Amunts K, von Cramon DY (2006) The anatomical segregation of the frontal cortex: what does it mean for function? Cortex 42(4):525–528CrossRefPubMed Amunts K, von Cramon DY (2006) The anatomical segregation of the frontal cortex: what does it mean for function? Cortex 42(4):525–528CrossRefPubMed
go back to reference Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trends Cogn Sci 16(8):418–426CrossRefPubMed Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trends Cogn Sci 16(8):418–426CrossRefPubMed
go back to reference Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341CrossRefPubMed Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341CrossRefPubMed
go back to reference Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489CrossRefPubMedPubMedCentral Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489CrossRefPubMedPubMedCentral
go back to reference Baayen RH, Piepenbrock R, Gulikers L (1996) CELEX2. Linguistic Data Consortium, Philadelphia Baayen RH, Piepenbrock R, Gulikers L (1996) CELEX2. Linguistic Data Consortium, Philadelphia
go back to reference Belmaker B, Fitzgerald P, George MS, Lisanby HS, Pascual-Leone A, Schlaepfer TE, Wassermann E (2003) Managing the risks of repetitive transcranial stimulation. CNS Spectr 8:489CrossRefPubMed Belmaker B, Fitzgerald P, George MS, Lisanby HS, Pascual-Leone A, Schlaepfer TE, Wassermann E (2003) Managing the risks of repetitive transcranial stimulation. CNS Spectr 8:489CrossRefPubMed
go back to reference Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19CrossRefPubMed Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19CrossRefPubMed
go back to reference Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20(3):1685–1696CrossRefPubMed Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20(3):1685–1696CrossRefPubMed
go back to reference Brass M, Derrfuss J, Forstmann B, von Cramon DY (2005) The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 9(7):314–316CrossRefPubMed Brass M, Derrfuss J, Forstmann B, von Cramon DY (2005) The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 9(7):314–316CrossRefPubMed
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig
go back to reference Bungert A, Antunes A, Espenhahn S, Thielscher A (2017) Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cereb Cortex 27(11):5083–5094PubMed Bungert A, Antunes A, Espenhahn S, Thielscher A (2017) Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cereb Cortex 27(11):5083–5094PubMed
go back to reference Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013) Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83:174–188CrossRefPubMedPubMedCentral Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013) Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83:174–188CrossRefPubMedPubMedCentral
go back to reference Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G (2010) Analysis of naming errors during cortical stimulation mapping: implication for models of language representation. Brain Lang 115(2):101–112CrossRefPubMedPubMedCentral Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G (2010) Analysis of naming errors during cortical stimulation mapping: implication for models of language representation. Brain Lang 115(2):101–112CrossRefPubMedPubMedCentral
go back to reference De Witte E, Mariën P (2013) The neurolinguistic approach to awake surgery reviewed. Clin Neurol Neurosurg 115(2):127–145CrossRefPubMed De Witte E, Mariën P (2013) The neurolinguistic approach to awake surgery reviewed. Clin Neurol Neurosurg 115(2):127–145CrossRefPubMed
go back to reference Derrfuss J, Brass M, von Cramon DY (2004) Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. Neuroimage 23(2):604–612CrossRefPubMed Derrfuss J, Brass M, von Cramon DY (2004) Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. Neuroimage 23(2):604–612CrossRefPubMed
go back to reference Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34CrossRefPubMed Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34CrossRefPubMed
go back to reference Duffau H (2007) Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin 37(6):373–382CrossRefPubMed Duffau H (2007) Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin 37(6):373–382CrossRefPubMed
go back to reference Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, Van Effenterre R (2003) The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 20(4):1903–1914CrossRefPubMed Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, Van Effenterre R (2003) The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 20(4):1903–1914CrossRefPubMed
go back to reference Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(Pt 4):797–810CrossRefPubMed Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(Pt 4):797–810CrossRefPubMed
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed
go back to reference Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans A, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521CrossRefPubMed Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans A, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521CrossRefPubMed
go back to reference Epstein CM, Lah JJ, Meador K, Weissman JD, Gaitan LE, Dihenia B (1996) Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47(6):1590–1593CrossRefPubMed Epstein CM, Lah JJ, Meador K, Weissman JD, Gaitan LE, Dihenia B (1996) Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47(6):1590–1593CrossRefPubMed
go back to reference Epstein CM, Woodard JL, Stringer AY, Bakay RA, Henry TR, Pennell PB, Litt B (2000) Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology 55(7):1025–1027CrossRefPubMed Epstein CM, Woodard JL, Stringer AY, Bakay RA, Henry TR, Pennell PB, Litt B (2000) Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology 55(7):1025–1027CrossRefPubMed
go back to reference Espadaler JM, Conesa G (2011) Navigated repetitive Transcranial Magnetic Stimulation (TMS) for language mapping: a new tool for surgical planning. In: Duffau H (ed) Brain mapping: from neural basis of cognition to surgical applications. Springer, New York, pp 253–261CrossRef Espadaler JM, Conesa G (2011) Navigated repetitive Transcranial Magnetic Stimulation (TMS) for language mapping: a new tool for surgical planning. In: Duffau H (ed) Brain mapping: from neural basis of cognition to surgical applications. Springer, New York, pp 253–261CrossRef
go back to reference Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91(4):1357–1392CrossRefPubMed Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91(4):1357–1392CrossRefPubMed
go back to reference Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25(35):8010–8016CrossRefPubMedPubMedCentral Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25(35):8010–8016CrossRefPubMedPubMedCentral
go back to reference Hagoort P (2014) Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr Opin Neurobiol 28:136–141CrossRefPubMed Hagoort P (2014) Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr Opin Neurobiol 28:136–141CrossRefPubMed
go back to reference Hartwigsen G (2015) The neurophysiology of language: insights from non-invasive brain stimulation in the healthy human brain. Brain Lang 148:81–94CrossRefPubMed Hartwigsen G (2015) The neurophysiology of language: insights from non-invasive brain stimulation in the healthy human brain. Brain Lang 148:81–94CrossRefPubMed
go back to reference Hartwigsen G, Siebner HR (2012) Probing the involvement of the right hemisphere in language processing with online transcranial magnetic stimulation in healthy volunteers. Aphasiology 26(9):1131–1152CrossRef Hartwigsen G, Siebner HR (2012) Probing the involvement of the right hemisphere in language processing with online transcranial magnetic stimulation in healthy volunteers. Aphasiology 26(9):1131–1152CrossRef
go back to reference Hauck T, Tanigawa N, Probst M, Wohlschlaeger A, Ille S, Sollmann N, Maurer S, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) Task type affects location of language-positive cortical regions by repetitive navigated transcranial magnetic stimulation mapping. PLoS One 10(4):e0125298CrossRefPubMedPubMedCentral Hauck T, Tanigawa N, Probst M, Wohlschlaeger A, Ille S, Sollmann N, Maurer S, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) Task type affects location of language-positive cortical regions by repetitive navigated transcranial magnetic stimulation mapping. PLoS One 10(4):e0125298CrossRefPubMedPubMedCentral
go back to reference Heim S, Eickhoff SB, Amunts K (2008) Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? Neuroimage 40(3):1362–1368CrossRefPubMed Heim S, Eickhoff SB, Amunts K (2008) Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? Neuroimage 40(3):1362–1368CrossRefPubMed
go back to reference Heim S, Eickhoff SB, Amunts K (2009a) Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. Neuroimage 48(3):616–624CrossRefPubMedPubMedCentral Heim S, Eickhoff SB, Amunts K (2009a) Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. Neuroimage 48(3):616–624CrossRefPubMedPubMedCentral
go back to reference Heim S, Eickhoff SB, Friederici AD, Amunts K (2009b) Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Struct Funct 213(4–5):441–456CrossRefPubMedPubMedCentral Heim S, Eickhoff SB, Friederici AD, Amunts K (2009b) Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Struct Funct 213(4–5):441–456CrossRefPubMedPubMedCentral
go back to reference Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Boeckh-Behrens T, Meyer B, Ringel F, Krieg SM (2015a) Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg 123(2):314–324CrossRefPubMed Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Boeckh-Behrens T, Meyer B, Ringel F, Krieg SM (2015a) Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg 123(2):314–324CrossRefPubMed
go back to reference Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Zimmer C, Meyer B, Ringel F, Krieg SM (2015b) Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg 123(1):212–225CrossRefPubMed Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Zimmer C, Meyer B, Ringel F, Krieg SM (2015b) Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg 123(1):212–225CrossRefPubMed
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMed
go back to reference Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23(12):5308–5318PubMed Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23(12):5308–5318PubMed
go back to reference Lioumis P, Zhdanov A, Mäkelä N, Lehtinen H, Wilenius J, Neuvonen T, Hannula H, Deletis V, Picht T, Mäkelä JP (2012) A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 204(2):349–354CrossRefPubMed Lioumis P, Zhdanov A, Mäkelä N, Lehtinen H, Wilenius J, Neuvonen T, Hannula H, Deletis V, Picht T, Mäkelä JP (2012) A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 204(2):349–354CrossRefPubMed
go back to reference Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326CrossRefPubMed Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326CrossRefPubMed
go back to reference Ojemann G, Ojemann J, Lettich E, Berger M (2008) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. 1989. J Neurosurg 108(2):411–421 Ojemann G, Ojemann J, Lettich E, Berger M (2008) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. 1989. J Neurosurg 108(2):411–421
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264CrossRefPubMed Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264CrossRefPubMed
go back to reference Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W (2014) Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. Neuroimage Clin 4:500–507CrossRefPubMedPubMedCentral Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W (2014) Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. Neuroimage Clin 4:500–507CrossRefPubMedPubMedCentral
go back to reference Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B (2009) From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex 19(9):2156–2165CrossRefPubMedPubMedCentral Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B (2009) From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex 19(9):2156–2165CrossRefPubMedPubMedCentral
go back to reference Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702CrossRefPubMed Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702CrossRefPubMed
go back to reference Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed
go back to reference Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354(1387):1229–1238CrossRefPubMedPubMedCentral Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354(1387):1229–1238CrossRefPubMedPubMedCentral
go back to reference Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Mäkelä JP, Deletis V, Meyer B, Vajkoczy P, Ringel F (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72(5):808–819CrossRefPubMed Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Mäkelä JP, Deletis V, Meyer B, Vajkoczy P, Ringel F (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72(5):808–819CrossRefPubMed
go back to reference Poldrack RA, Wagner AD, Prull MW, Desmond JE, Glover GH, Gabrieli JD (1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10(1):15–35CrossRefPubMed Poldrack RA, Wagner AD, Prull MW, Desmond JE, Glover GH, Gabrieli JD (1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10(1):15–35CrossRefPubMed
go back to reference Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88CrossRefPubMed Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88CrossRefPubMed
go back to reference Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62(2):816–847CrossRefPubMedPubMedCentral Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62(2):816–847CrossRefPubMedPubMedCentral
go back to reference Rogić M, Deletis V, Fernández-Conejero I (2014) Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. J Neurosurg 120(5):1033–1041CrossRefPubMed Rogić M, Deletis V, Fernández-Conejero I (2014) Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. J Neurosurg 120(5):1033–1041CrossRefPubMed
go back to reference Rösler J, Niraula B, Strack V, Zdunczyk A, Schilt S, Savolainen P, Lioumis P, Mäkelä J, Vajkoczy P, Frey D, Picht T (2014) Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clin Neurophysiol 125(3):526–536CrossRefPubMed Rösler J, Niraula B, Strack V, Zdunczyk A, Schilt S, Savolainen P, Lioumis P, Mäkelä J, Vajkoczy P, Frey D, Picht T (2014) Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clin Neurophysiol 125(3):526–536CrossRefPubMed
go back to reference Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell CJ, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92CrossRefPubMed Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell CJ, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92CrossRefPubMed
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMed Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMed
go back to reference Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45(9):1043–1049CrossRefPubMed Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45(9):1043–1049CrossRefPubMed
go back to reference Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16(5):593–599CrossRefPubMed Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16(5):593–599CrossRefPubMed
go back to reference Sakreida K, Schubotz RI, Wolfensteller U, von Cramon DY (2005) Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. J Neurosci 25(6):1335–1342CrossRefPubMed Sakreida K, Schubotz RI, Wolfensteller U, von Cramon DY (2005) Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. J Neurosci 25(6):1335–1342CrossRefPubMed
go back to reference Sandrini M, Umiltà C, Rusconi E (2011) The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 35(3):516–536CrossRefPubMed Sandrini M, Umiltà C, Rusconi E (2011) The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 35(3):516–536CrossRefPubMed
go back to reference Schäffler L, Lüders HO, Dinner DS, Lesser RP, Chelune GJ (1993) Comprehension deficits elicited by electrical stimulation of Broca’s area. Brain 116(Pt3):695–715CrossRefPubMed Schäffler L, Lüders HO, Dinner DS, Lesser RP, Chelune GJ (1993) Comprehension deficits elicited by electrical stimulation of Broca’s area. Brain 116(Pt3):695–715CrossRefPubMed
go back to reference Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5):211–218CrossRefPubMed Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5):211–218CrossRefPubMed
go back to reference Schubotz RI, von Cramon DY (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Res Cogn Brain Res 11(1):97–112CrossRefPubMed Schubotz RI, von Cramon DY (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Res Cogn Brain Res 11(1):97–112CrossRefPubMed
go back to reference Schubotz RI, von Cramon DY (2003) Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20(Suppl 1):S120–S131CrossRefPubMed Schubotz RI, von Cramon DY (2003) Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20(Suppl 1):S120–S131CrossRefPubMed
go back to reference Schuhmann T, Schiller NO, Goebel R, Sack AT (2012) Speaking of which: dissecting the neurocognitive network of language production in picture naming. Cereb Cortex 22(3):701–709CrossRefPubMed Schuhmann T, Schiller NO, Goebel R, Sack AT (2012) Speaking of which: dissecting the neurocognitive network of language production in picture naming. Cereb Cortex 22(3):701–709CrossRefPubMed
go back to reference Sollmann N, Ille S, Obermueller T, Negwer C, Ringel F, Meyer B, Krieg SM (2015) The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. Eur J Med Res 20:47CrossRefPubMedPubMedCentral Sollmann N, Ille S, Obermueller T, Negwer C, Ringel F, Meyer B, Krieg SM (2015) The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. Eur J Med Res 20:47CrossRefPubMedPubMedCentral
go back to reference Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS (2013) Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage 82:260–272CrossRefPubMed Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS (2013) Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage 82:260–272CrossRefPubMed
go back to reference Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H (2014) Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137(Pt 10):2773–2782CrossRefPubMed Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H (2014) Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137(Pt 10):2773–2782CrossRefPubMed
go back to reference Tettamanti M, Weniger D (2006) Broca’s area: a supramodal hierarchical processor? Cortex 42(4):491–494CrossRefPubMed Tettamanti M, Weniger D (2006) Broca’s area: a supramodal hierarchical processor? Cortex 42(4):491–494CrossRefPubMed
go back to reference Thielscher A, Kammer T (2002) Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. Neuroimage 17(3):1117–1130CrossRefPubMed Thielscher A, Kammer T (2002) Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. Neuroimage 17(3):1117–1130CrossRefPubMed
go back to reference Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115(7):1697–1708CrossRefPubMed Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115(7):1697–1708CrossRefPubMed
go back to reference Thielscher A, Wichmann FA (2009) Determining the cortical target of transcranial magnetic stimulation. Neuroimage 47(4):1319–1330CrossRefPubMed Thielscher A, Wichmann FA (2009) Determining the cortical target of transcranial magnetic stimulation. Neuroimage 47(4):1319–1330CrossRefPubMed
go back to reference Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54(1):234–243CrossRefPubMed Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54(1):234–243CrossRefPubMed
go back to reference Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432CrossRefPubMed Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432CrossRefPubMed
go back to reference Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1):1–16CrossRefPubMed Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1):1–16CrossRefPubMed
go back to reference Wellmer J, Weber C, Mende M, von der Groeben F, Urbach H, Clusmann H, Elger CE, Helmstaedter C (2009) Multitask electrical stimulation for cortical language mapping: hints for necessity and economic mode of application. Epilepsia 50(10):2267–2275CrossRefPubMed Wellmer J, Weber C, Mende M, von der Groeben F, Urbach H, Clusmann H, Elger CE, Helmstaedter C (2009) Multitask electrical stimulation for cortical language mapping: hints for necessity and economic mode of application. Epilepsia 50(10):2267–2275CrossRefPubMed
go back to reference Xiang HD, Fonteijn HM, Norris DG, Hagoort P (2010) Topographical functional connectivity pattern in the perisylvian language networks. Cereb Cortex 20(3):549–560CrossRefPubMed Xiang HD, Fonteijn HM, Norris DG, Hagoort P (2010) Topographical functional connectivity pattern in the perisylvian language networks. Cereb Cortex 20(3):549–560CrossRefPubMed
go back to reference Zhang Y, Fan L, Caspers S, Heim S, Song M, Liu C, Mo Y, Eickhoff SB, Amunts K, Jiang T (2017) Cross-cultural consistency and diversity in intrinsic functional organization of Broca’s Region. Neuroimage 150:177–190CrossRefPubMed Zhang Y, Fan L, Caspers S, Heim S, Song M, Liu C, Mo Y, Eickhoff SB, Amunts K, Jiang T (2017) Cross-cultural consistency and diversity in intrinsic functional organization of Broca’s Region. Neuroimage 150:177–190CrossRefPubMed
go back to reference Ziemann U, Siebner HR (2015) Inter-subject and inter-session variability of plasticity induction by non-invasive brain stimulation: boon or bane? Brain Stimul 8(3):662–663CrossRefPubMed Ziemann U, Siebner HR (2015) Inter-subject and inter-session variability of plasticity induction by non-invasive brain stimulation: boon or bane? Brain Stimul 8(3):662–663CrossRefPubMed
go back to reference Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89CrossRefPubMedPubMedCentral Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89CrossRefPubMedPubMedCentral
Metadata
Title
High-resolution language mapping of Broca’s region with transcranial magnetic stimulation
Authors
Katrin Sakreida
Inga Lange
Klaus Willmes
Stefan Heim
Ferdinand Binkofski
Hans Clusmann
Georg Neuloh
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1550-8

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue