Skip to main content
Top
Published in: Brain Structure and Function 1/2017

01-01-2017 | Short Communication

Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity

Authors: Camille Chavan, Michael Mouthon, Marie Simonet, Henri-Marcel Hoogewoud, Bogdan Draganski, Wietske van der Zwaag, Lucas Spierer

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

What are the neurophysiological determinants of sustained supra-normal inhibitory control performance? We addressed this question by coupling multimodal neuroimaging and behavioral investigations of experts in fencing who underwent more than 20,000 h of inhibitory control training over 15 years. The superior control of the experts manifested behaviorally as a speeding-up of inhibition processes during a Go/NoGo task and was accompanied by changes in bilateral inferior frontal white matter microstructure. In the expert group, inhibition performance correlated positively with the fractional anisotropy (FA) of white matter tracts projecting to the basal ganglia, and the total training load with the FA in supplementary motor areas. Critically, the experts showed no changes in grey matter volume or in the functional organization of the fronto-basal inhibitory control network. The fencers’ performance and neural activity during a 2-back working memory task did not differ from those of the controls, ensuring that their expertise was specific to inhibitory control. Our results indicate that while phasic changes in the patterns of neural activity and grey matter architecture accompany inhibitory control improvement after short- to medium- term training, long-lasting inhibitory control improvements primarily depend on the reinforcement of fronto-basal structural connectivity.
Literature
go back to reference Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. [Research Support, Non-US Gov’t Review]. NMR Biomed 15(7–8):435–455. doi:10.1002/nbm.782 CrossRefPubMed Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. [Research Support, Non-US Gov’t Review]. NMR Biomed 15(7–8):435–455. doi:10.​1002/​nbm.​782 CrossRefPubMed
go back to reference Chan JSY, Wong AC-N, Liu Y, Yu J, Yan JH (2011) Fencing expertise and physical fitness enhance action inhibition. Psychol Sport Exerc 1212(5):509–514CrossRef Chan JSY, Wong AC-N, Liu Y, Yu J, Yan JH (2011) Fencing expertise and physical fitness enhance action inhibition. Psychol Sport Exerc 1212(5):509–514CrossRef
go back to reference Chavan CF, Mouthon M, Draganski B, van der Zwaag W, Spierer L (2015) Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency. Hum Brain Mapp. doi:10.1002/hbm.22789 PubMed Chavan CF, Mouthon M, Draganski B, van der Zwaag W, Spierer L (2015) Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency. Hum Brain Mapp. doi:10.​1002/​hbm.​22789 PubMed
go back to reference Hartmann L, Sallard E, Spierer L (2015) Enhancing frontal top-down inhibitory control with Go/NoGo training. Brain Struct Funct [Epub ahead of print] PMID: 26459141 Hartmann L, Sallard E, Spierer L (2015) Enhancing frontal top-down inhibitory control with Go/NoGo training. Brain Struct Funct [Epub ahead of print] PMID: 26459141
go back to reference Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. [Research Support, N.I.H., Extramural]. Hum Brain Mapp 27(10):779–788. doi:10.1002/hbm.20219 CrossRefPubMed Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. [Research Support, N.I.H., Extramural]. Hum Brain Mapp 27(10):779–788. doi:10.​1002/​hbm.​20219 CrossRefPubMed
go back to reference Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9(1):117–123CrossRefPubMed Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9(1):117–123CrossRefPubMed
go back to reference Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21(1):450–455CrossRefPubMed Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21(1):450–455CrossRefPubMed
go back to reference Mechelli A, Henson RN, Price CJ, Friston KJ (2003) Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage 18(3):806–810CrossRefPubMed Mechelli A, Henson RN, Price CJ, Friston KJ (2003) Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage 18(3):806–810CrossRefPubMed
go back to reference Nachev P, Wydell H, O’neill K, Husain M, Kennard C (2007) The role of the pre-supplementary motor area in the control of action. Neuroimage 36(Suppl 2):T155–T163CrossRefPubMedPubMedCentral Nachev P, Wydell H, O’neill K, Husain M, Kennard C (2007) The role of the pre-supplementary motor area in the control of action. Neuroimage 36(Suppl 2):T155–T163CrossRefPubMedPubMedCentral
go back to reference Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. [Research Support, Non-US Gov’t]. Hum Brain Mapp 15(1):1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. [Research Support, Non-US Gov’t]. Hum Brain Mapp 15(1):1–25CrossRefPubMed
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference Roi GS, Bianchedi D (2008) The science of fencing: implications for performance and injury prevention [Review]. Sports Med 38(6):465–481CrossRefPubMed Roi GS, Bianchedi D (2008) The science of fencing: implications for performance and injury prevention [Review]. Sports Med 38(6):465–481CrossRefPubMed
go back to reference Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46(1):224–232CrossRefPubMed Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46(1):224–232CrossRefPubMed
go back to reference Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, Behrens TE (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. [Research Support, Non-US Gov’t]. Nat Protoc 2(3):499–503. doi:10.1038/nprot.2007.45 CrossRefPubMed Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, Behrens TE (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. [Research Support, Non-US Gov’t]. Nat Protoc 2(3):499–503. doi:10.​1038/​nprot.​2007.​45 CrossRefPubMed
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi:10.1006/nimg.2001.0978 CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi:10.​1006/​nimg.​2001.​0978 CrossRefPubMed
go back to reference Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150CrossRefPubMed Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150CrossRefPubMed
go back to reference White CN, Congdon E, Mumford JA, Karlsgodt KH, Sabb FW, Freimer NB, Poldrack RA (2014) Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control. [Research Support, N.I.H., Extramural Research Support, Non-US Gov’t]. J Cogn Neurosci 26(8):1601–1614. doi:10.1162/jocn_a_00567 CrossRefPubMedPubMedCentral White CN, Congdon E, Mumford JA, Karlsgodt KH, Sabb FW, Freimer NB, Poldrack RA (2014) Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control. [Research Support, N.I.H., Extramural Research Support, Non-US Gov’t]. J Cogn Neurosci 26(8):1601–1614. doi:10.​1162/​jocn_​a_​00567 CrossRefPubMedPubMedCentral
Metadata
Title
Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity
Authors
Camille Chavan
Michael Mouthon
Marie Simonet
Henri-Marcel Hoogewoud
Bogdan Draganski
Wietske van der Zwaag
Lucas Spierer
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1156-y

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue