Skip to main content
Top
Published in: Brain Structure and Function 1/2017

01-01-2017 | Short Communication

Callosotopy: leg motor connections illustrated by fiber dissection

Authors: Wim Naets, Johannes Van Loon, Eliseu Paglioli, W. Van Paesschen, André Palmini, Tom Theys

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

Precise anatomical knowledge of the structure of the corpus callosum is important in split-brain research and during neurosurgical procedures sectioning the callosum. According to the classic literature, commissural fibers connecting the motor cortex are situated in the anterior part of the corpus callosum. On the other hand, more recent imaging studies using diffusion tensor imaging indicate a more posterior topography of callosal fibers connecting motor areas. Topographical knowledge is especially critical when performing disconnective callosotomies in epilepsy patients who experience sudden loss of leg motor control, so-called epileptic drop attacks. In the current study, we aim to precisely delineate the topography of the leg motor connections of the corpus callosum. Of 20 hemispheres obtained at autopsy, 16 were dissected according to Klingler’s fiber dissection technique to study the course and topography of callosal fibers connecting the most medial part of the precentral gyrus. Fibers originating from the anterior bank of the central sulcus were invariably found to be located in the isthmus of the corpus callosum, and no leg motor fibers were found in the anterior part of the callosum. The current results suggest that the disconnection of the pre-splenial fibers, located in the posterior one-third of the corpus callosum, is paramount in obtaining a good outcome after callosotomy.
Literature
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598(1–2):143–153CrossRefPubMed Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598(1–2):143–153CrossRefPubMed
go back to reference Bogen JE (1993) The callosal syndromes. In: Valenstein E, Heilman KM (eds) Clinical neuropsychology, third edition. Oxford University Press, Oxford, pp 337–407 Bogen JE (1993) The callosal syndromes. In: Valenstein E, Heilman KM (eds) Clinical neuropsychology, third edition. Oxford University Press, Oxford, pp 337–407
go back to reference de Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44(6):578–591CrossRefPubMed de Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44(6):578–591CrossRefPubMed
go back to reference Erickson TC (1940) Spread of the epileptic discharge: an experimental study of the after-discharge induced by electrical stimulation of the cerebral cortex. Arch Neurol Psychiatr 43:429–452CrossRef Erickson TC (1940) Spread of the epileptic discharge: an experimental study of the after-discharge induced by electrical stimulation of the cerebral cortex. Arch Neurol Psychiatr 43:429–452CrossRef
go back to reference Funnell MG, Corballis PM, Gazzaniga MS (2000) Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 57(2):185–189CrossRefPubMed Funnell MG, Corballis PM, Gazzaniga MS (2000) Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 57(2):185–189CrossRefPubMed
go back to reference Gordon HW, Bogen JE, Sperry RW (1971) Absence of deconnexion syndrome in two patients with partial section of the neocommissures. Brain 94(2):327–336CrossRefPubMed Gordon HW, Bogen JE, Sperry RW (1971) Absence of deconnexion syndrome in two patients with partial section of the neocommissures. Brain 94(2):327–336CrossRefPubMed
go back to reference Karol EA, Pandya DN (1971) The distribution of the corpus callosum in the Rhesus monkey. Brain 94(3):471–486CrossRefPubMed Karol EA, Pandya DN (1971) The distribution of the corpus callosum in the Rhesus monkey. Brain 94(3):471–486CrossRefPubMed
go back to reference Klingler J (1935) Erleichterung des makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256 Klingler J (1935) Erleichterung des makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256
go back to reference Maehara T, Shimizu H (2001) Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia 42(1):67–71CrossRefPubMed Maehara T, Shimizu H (2001) Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia 42(1):67–71CrossRefPubMed
go back to reference Ottino CA, Meglio M, Rossi GF, Tercero E (1971) An experimental study of the structure mediating bilateral synchrony of epileptic discharges of cortical origin. Epilepsia 12(4):299–311CrossRefPubMed Ottino CA, Meglio M, Rossi GF, Tercero E (1971) An experimental study of the structure mediating bilateral synchrony of epileptic discharges of cortical origin. Epilepsia 12(4):299–311CrossRefPubMed
go back to reference Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26(2):217–233CrossRefPubMed Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26(2):217–233CrossRefPubMed
go back to reference Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32(1):31–43CrossRefPubMed Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32(1):31–43CrossRefPubMed
go back to reference Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
go back to reference Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55(5):1174–1184CrossRefPubMed Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55(5):1174–1184CrossRefPubMed
go back to reference Tinuper P, Cerullo A, Marini C, Avoni P, Rosati A, Riva R, Baruzzi A, Lugaresi E (1998) Epileptic drop attacks in partial epilepsy: clinical features, evolution, and prognosis. J Neurol Neurosurg Psychiatry 64(2):231–237CrossRefPubMedPubMedCentral Tinuper P, Cerullo A, Marini C, Avoni P, Rosati A, Riva R, Baruzzi A, Lugaresi E (1998) Epileptic drop attacks in partial epilepsy: clinical features, evolution, and prognosis. J Neurol Neurosurg Psychiatry 64(2):231–237CrossRefPubMedPubMedCentral
go back to reference Van Valkenburg CT (1913) Experimental and pathologico-anatomical researches on the corpus callosum. Brain 36:119–165CrossRef Van Valkenburg CT (1913) Experimental and pathologico-anatomical researches on the corpus callosum. Brain 36:119–165CrossRef
go back to reference van Wagenen WP, Herren RY (1940) Surgical division of the commissural pathways in the corpus callosum. Relation to spread of an epileptic attack. Arch Neurol Psychiatry 44:740–759CrossRef van Wagenen WP, Herren RY (1940) Surgical division of the commissural pathways in the corpus callosum. Relation to spread of an epileptic attack. Arch Neurol Psychiatry 44:740–759CrossRef
go back to reference Velut S, Destrieux C, Kakou M (1998) Morphologic anatomy of the corpus callosum. Neurochirurgie 44(1 Suppl):17–30PubMed Velut S, Destrieux C, Kakou M (1998) Morphologic anatomy of the corpus callosum. Neurochirurgie 44(1 Suppl):17–30PubMed
go back to reference Wada JA, Komai S (1985) Effect of anterior two-thirds callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon, Papio papio. Epilepsy and the corpus callosum. Plenum Press, New York Wada JA, Komai S (1985) Effect of anterior two-thirds callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon, Papio papio. Epilepsy and the corpus callosum. Plenum Press, New York
go back to reference Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138. doi:10.1523/JNEUROSCI.2320-07.2007 CrossRefPubMed Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138. doi:10.​1523/​JNEUROSCI.​2320-07.​2007 CrossRefPubMed
go back to reference Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112(Pt 3):799–835CrossRefPubMed Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112(Pt 3):799–835CrossRefPubMed
Metadata
Title
Callosotopy: leg motor connections illustrated by fiber dissection
Authors
Wim Naets
Johannes Van Loon
Eliseu Paglioli
W. Van Paesschen
André Palmini
Tom Theys
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1167-8

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue