Skip to main content
Top
Published in: Brain Structure and Function 4/2016

Open Access 01-05-2016 | Brain Mythology

Is the brain really a small-world network?

Authors: Claus C. Hilgetag, Alexandros Goulas

Published in: Brain Structure and Function | Issue 4/2016

Login to get access

Excerpt

It is commonly assumed that the brain is a small-world network (e.g., Sporns and Honey 2006). Indeed, one of the present authors claimed as much 15 years ago (Hilgetag et al. 2000). The small-worldness is believed to be a crucial aspect of efficient brain organization that confers significant advantages in signal processing (e.g., Lago-Fernández et al. 2000). Correspondingly, the small-world organization is deemed essential for healthy brain function, as alterations of small-world features are observed in patient groups with Alzheimer’s disease (Stam et al. 2007), autism (Barttfeld et al. 2011) or schizophrenia spectrum diseases (Liu et al. 2008; Wang et al. 2012; Zalesky et al. 2011). …
Appendix
Available only for authorised users
Literature
go back to reference Barttfeld P et al (2011) A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49:254–263CrossRefPubMed Barttfeld P et al (2011) A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49:254–263CrossRefPubMed
go back to reference Bolaños M, Bernat EM, He B, Aviyente S (2013) A weighted small world network measure for assessing functional connectivity. J Neurosci Methods 212:133–142CrossRefPubMed Bolaños M, Bernat EM, He B, Aviyente S (2013) A weighted small world network measure for assessing functional connectivity. J Neurosci Methods 212:133–142CrossRefPubMed
go back to reference Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, BerlinCrossRef Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, BerlinCrossRef
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Gallos LK, Makse H, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci USA 109:2825–2830CrossRefPubMedPubMedCentral Gallos LK, Makse H, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci USA 109:2825–2830CrossRefPubMedPubMedCentral
go back to reference Garcia GC et al (2012) Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front Comput Neurosci 6:50CrossRefPubMedPubMedCentral Garcia GC et al (2012) Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front Comput Neurosci 6:50CrossRefPubMedPubMedCentral
go back to reference Gómez-Gardeñes J, Zamora-López G, Moreno Y, Arenas A (2010) From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PLoS ONE 5:e12313CrossRefPubMedPubMedCentral Gómez-Gardeñes J, Zamora-López G, Moreno Y, Arenas A (2010) From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PLoS ONE 5:e12313CrossRefPubMedPubMedCentral
go back to reference Goulas A, Bastiani M, Bezgin G, Uylings HBM, Roebroeck A et al (2014) Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 10:e1003529CrossRefPubMedPubMedCentral Goulas A, Bastiani M, Bezgin G, Uylings HBM, Roebroeck A et al (2014) Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 10:e1003529CrossRefPubMedPubMedCentral
go back to reference Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci 109:10661–10668CrossRefPubMedPubMedCentral Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci 109:10661–10668CrossRefPubMedPubMedCentral
go back to reference Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2:353–360CrossRefPubMed Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2:353–360CrossRefPubMed
go back to reference Hilgetag CC et al (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc B 355:91–110CrossRef Hilgetag CC et al (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc B 355:91–110CrossRef
go back to reference Humphries MD, Gurney K (2008) Network “Small-World-Ness”: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051CrossRefPubMed Humphries MD, Gurney K (2008) Network “Small-World-Ness”: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051CrossRefPubMed
go back to reference Hütt M-T, Kaiser M, Hilgetag CC (2014) Network-guided pattern formation of neural dynamics. Philos Trans R Soc B 369:20130522CrossRef Hütt M-T, Kaiser M, Hilgetag CC (2014) Network-guided pattern formation of neural dynamics. Philos Trans R Soc B 369:20130522CrossRef
go back to reference Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8CrossRefPubMedPubMedCentral Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8CrossRefPubMedPubMedCentral
go back to reference Kaiser M et al (2007) Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J Phys 9:110CrossRef Kaiser M et al (2007) Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J Phys 9:110CrossRef
go back to reference Klemperer V (1938) Tagebücher 1937–1939, p 122 (“piccolo mondo moderno”), Aufbau Taschenbuch Verlag 1999 Klemperer V (1938) Tagebücher 1937–1939, p 122 (“piccolo mondo moderno”), Aufbau Taschenbuch Verlag 1999
go back to reference Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761CrossRefPubMed Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761CrossRefPubMed
go back to reference Li L, Rilling JK, Preuss TM, Glasser MF, Damen FW et al (2012) Quantitative assessment of a framework for creating anatomical brain networks via global tractography. NeuroImage 61:1017–1030CrossRefPubMedPubMedCentral Li L, Rilling JK, Preuss TM, Glasser MF, Damen FW et al (2012) Quantitative assessment of a framework for creating anatomical brain networks via global tractography. NeuroImage 61:1017–1030CrossRefPubMedPubMedCentral
go back to reference Marr C, Hütt M (2006) Similar impact of topological and dynamic noise on complex patterns. Phys Lett A 349:302–305CrossRef Marr C, Hütt M (2006) Similar impact of topological and dynamic noise on complex patterns. Phys Lett A 349:302–305CrossRef
go back to reference Milgram S (1967) The small world problem. Psychol Today 2:60–67 Milgram S (1967) The small world problem. Psychol Today 2:60–67
go back to reference Moretti P, Muñoz MA (2013) Griffiths phases and the stretching of criticality in brain networks. Nat Commun 4:2521CrossRefPubMed Moretti P, Muñoz MA (2013) Griffiths phases and the stretching of criticality in brain networks. Nat Commun 4:2521CrossRefPubMed
go back to reference Robinson PA et al (2009) Dynamical reconnection and stability constraints on cortical network architecture. Phys Rev Lett 103:108104CrossRefPubMed Robinson PA et al (2009) Dynamical reconnection and stability constraints on cortical network architecture. Phys Rev Lett 103:108104CrossRefPubMed
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069CrossRefPubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069CrossRefPubMed
go back to reference Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. NeuroImage 56:2068–2079CrossRefPubMed Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. NeuroImage 56:2068–2079CrossRefPubMed
go back to reference Samu D, Seth AK, Nowotny T (2014) Influence of wiring cost on the large-scale architecture of human cortical connectivity. PLoS Comput Biol 10:e1003557CrossRefPubMedPubMedCentral Samu D, Seth AK, Nowotny T (2014) Influence of wiring cost on the large-scale architecture of human cortical connectivity. PLoS Comput Biol 10:e1003557CrossRefPubMedPubMedCentral
go back to reference Scannell JW et al (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299CrossRefPubMed Scannell JW et al (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299CrossRefPubMed
go back to reference Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100CrossRefPubMed Shew WL, Plenz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100CrossRefPubMed
go back to reference Sporns O (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85:55–64CrossRefPubMed Sporns O (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85:55–64CrossRefPubMed
go back to reference Sporns O et al (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed Sporns O et al (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed
go back to reference Sporns O et al (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425CrossRefPubMed Sporns O et al (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425CrossRefPubMed
go back to reference Sporns O et al (2007) Identification and classification of hubs in brain networks. PLoS ONE 10:e1049CrossRef Sporns O et al (2007) Identification and classification of hubs in brain networks. PLoS ONE 10:e1049CrossRef
go back to reference Stam CJ et al (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99CrossRefPubMed Stam CJ et al (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99CrossRefPubMed
go back to reference Stepanyants A, Martinez LM, Ferecskó AS, Kisvárday ZF (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci USA 106:3555–3560CrossRefPubMedPubMedCentral Stepanyants A, Martinez LM, Ferecskó AS, Kisvárday ZF (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci USA 106:3555–3560CrossRefPubMedPubMedCentral
go back to reference Stephan KE et al (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc B 356:1159–1186CrossRef Stephan KE et al (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc B 356:1159–1186CrossRef
go back to reference Thomas C, Ye FQ, Okan Irfanoglu M, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111:16574–16579CrossRefPubMedPubMedCentral Thomas C, Ye FQ, Okan Irfanoglu M, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111:16574–16579CrossRefPubMedPubMedCentral
go back to reference van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786CrossRefPubMed van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786CrossRefPubMed
go back to reference Wang S-J et al (2011) Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Front Comput Neurosci 5:30PubMedPubMedCentral Wang S-J et al (2011) Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Front Comput Neurosci 5:30PubMedPubMedCentral
go back to reference Wang Q et al (2012) Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage 59:1085–1093CrossRefPubMed Wang Q et al (2012) Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage 59:1085–1093CrossRefPubMed
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442CrossRefPubMed Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442CrossRefPubMed
go back to reference White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMed White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMed
go back to reference Zalesky A, Fornito A (2009) A DTI-derived measure of cortico-cortical connectivity. Trans Med Imaging 28(7):1023–1036CrossRef Zalesky A, Fornito A (2009) A DTI-derived measure of cortico-cortical connectivity. Trans Med Imaging 28(7):1023–1036CrossRef
go back to reference Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3):970–983CrossRefPubMed Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3):970–983CrossRefPubMed
go back to reference Zalesky A, Fornito A, Seal ML, Cocchi L, Westin C-F, Bullmore ET, Egan GF, Pantelis C (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69:80–89CrossRefPubMed Zalesky A, Fornito A, Seal ML, Cocchi L, Westin C-F, Bullmore ET, Egan GF, Pantelis C (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69:80–89CrossRefPubMed
go back to reference Zamora-López G et al (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1PubMedPubMedCentral Zamora-López G et al (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1PubMedPubMedCentral
Metadata
Title
Is the brain really a small-world network?
Authors
Claus C. Hilgetag
Alexandros Goulas
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1035-6

Other articles of this Issue 4/2016

Brain Structure and Function 4/2016 Go to the issue