Skip to main content
Top
Published in: Brain Structure and Function 4/2016

01-05-2016 | Original Article

Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor

Authors: Dominic Thibault, Nicolas Giguère, Fabien Loustalot, Marie-Josée Bourque, Charles Ducrot, Salah El Mestikawy, Louis-Éric Trudeau

Published in: Brain Structure and Function | Issue 4/2016

Login to get access

Abstract

Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Literature
go back to reference Bérubé-Carrière N, Riad M, Dal Bo G et al (2009) The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol 517:873–891. doi:10.1002/cne.22194 CrossRefPubMed Bérubé-Carrière N, Riad M, Dal Bo G et al (2009) The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol 517:873–891. doi:10.​1002/​cne.​22194 CrossRefPubMed
go back to reference Dal Bo G, St-Gelais F, Danik M et al (2004) Dopamine neurons in culture express VGluT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405CrossRefPubMed Dal Bo G, St-Gelais F, Danik M et al (2004) Dopamine neurons in culture express VGluT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405CrossRefPubMed
go back to reference Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259. doi:10.1038/nn1632 CrossRefPubMed Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259. doi:10.​1038/​nn1632 CrossRefPubMed
go back to reference El Mestikawy S, Wallén-Mackenzie A, Fortin GM et al (2011) From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 12:204–216. doi:10.1038/nrn2969 CrossRefPubMed El Mestikawy S, Wallén-Mackenzie A, Fortin GM et al (2011) From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 12:204–216. doi:10.​1038/​nrn2969 CrossRefPubMed
go back to reference Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432CrossRefPubMed Gerfen CR, Engber TM, Mahan LC et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432CrossRefPubMed
go back to reference Gras C, Herzog E, Bellenchi GC et al (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451PubMed Gras C, Herzog E, Bellenchi GC et al (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451PubMed
go back to reference Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res 503:334–338CrossRefPubMed Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res 503:334–338CrossRefPubMed
go back to reference Ingham CA, Hood SH, van Maldegem B et al (1993) Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp Brain Res 93:17–27CrossRefPubMed Ingham CA, Hood SH, van Maldegem B et al (1993) Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp Brain Res 93:17–27CrossRefPubMed
go back to reference McKinney RA, Lüthi A, Bandtlow CE et al (1999) Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc Natl Acad Sci USA 96:11631–11636CrossRefPubMedPubMedCentral McKinney RA, Lüthi A, Bandtlow CE et al (1999) Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc Natl Acad Sci USA 96:11631–11636CrossRefPubMedPubMedCentral
go back to reference Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425CrossRefPubMed Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425CrossRefPubMed
go back to reference Parish CL, Finkelstein DI, Drago J et al (2001) The role of dopamine receptors in regulating the size of axonal arbors. J Neurosci 21:5147–5157PubMed Parish CL, Finkelstein DI, Drago J et al (2001) The role of dopamine receptors in regulating the size of axonal arbors. J Neurosci 21:5147–5157PubMed
go back to reference Parish CL, Stanic D, Drago J et al (2002) Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size. Eur J Neurosci 16:787–794CrossRefPubMed Parish CL, Stanic D, Drago J et al (2002) Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size. Eur J Neurosci 16:787–794CrossRefPubMed
go back to reference Perrone-Capano C, Di Porzio U (2000) Genetic and epigenetic control of midbrain dopaminergic neuron development. Int J Dev Biol 44:679–687PubMed Perrone-Capano C, Di Porzio U (2000) Genetic and epigenetic control of midbrain dopaminergic neuron development. Int J Dev Biol 44:679–687PubMed
go back to reference Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023CrossRefPubMed Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023CrossRefPubMed
go back to reference Segal M, Greenberger V, Korkotian E (2003) Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity. Eur J Neurosci 17:2573–2585CrossRefPubMed Segal M, Greenberger V, Korkotian E (2003) Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity. Eur J Neurosci 17:2573–2585CrossRefPubMed
go back to reference Sharpe NA, Tepper JM (1998) Postnatal development of excitatory synaptic input to the rat neostriatum: an electron microscopic study. Neuroscience 84:1163–1175CrossRefPubMed Sharpe NA, Tepper JM (1998) Postnatal development of excitatory synaptic input to the rat neostriatum: an electron microscopic study. Neuroscience 84:1163–1175CrossRefPubMed
go back to reference Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387CrossRefPubMed Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387CrossRefPubMed
go back to reference Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591PubMed Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591PubMed
go back to reference Tepper JM, Sharpe NA, Koós TZ, Trent F (1998) Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 20:125–145CrossRefPubMed Tepper JM, Sharpe NA, Koós TZ, Trent F (1998) Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 20:125–145CrossRefPubMed
go back to reference Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887CrossRefPubMed Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887CrossRefPubMed
go back to reference Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492CrossRefPubMed Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492CrossRefPubMed
go back to reference Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38:49–62CrossRefPubMed Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38:49–62CrossRefPubMed
Metadata
Title
Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor
Authors
Dominic Thibault
Nicolas Giguère
Fabien Loustalot
Marie-Josée Bourque
Charles Ducrot
Salah El Mestikawy
Louis-Éric Trudeau
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1029-4

Other articles of this Issue 4/2016

Brain Structure and Function 4/2016 Go to the issue