Skip to main content
Top
Published in: Virchows Archiv 2/2017

01-08-2017 | Invited Annual Review Issue

Characterization of gliomas: from morphology to molecules

Authors: Sean P. Ferris, Jeffrey W. Hofmann, David A. Solomon, Arie Perry

Published in: Virchows Archiv | Issue 2/2017

Login to get access

Abstract

This article reviews the histologic and molecular characterization of gliomas, including the new “integrated diagnoses” of the World Health Organization Classification, 2016 edition. The entities reviewed within include diffuse gliomas (astrocytoma, oligodendroglioma, glioblastoma), as well as circumscribed and low-grade gliomas (angiocentric glioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, pleomorphic xanthoastrocytoma, pilomyxoid astrocytoma, ependymoma, myxopapillary ependymoma, and subependymoma). Diagnostic, prognostic, and predictive biomarkers are discussed for each entity. We review how molecular testing for IDH1 and ATRX and detection of chromosome 1p/19q codeletion can be used to categorize glioblastomas as IDH-wildtype or IDH-mutant, and lower grade diffuse gliomas into three molecular groups that correlate better with patient outcomes than histologic subtyping. Pediatric diffuse gliomas are highlighted, including diffuse midline glioma, H3 K27M-mutant, and inherited germline mutations that predispose to pediatric gliomas. The utility of genomic profiling of certain gliomas is discussed, including identifying candidates for experimental therapies. This review is meant to be a concise summary of glioma characterization for the practicing pathologist.
Literature
1.
go back to reference Batista CM, Mariano ED, Barbosa BJAP et al (2014) Adult neurogenesis and glial oncogenesis: when the process fails. Biomed Res Int 2014:438639PubMedPubMedCentral Batista CM, Mariano ED, Barbosa BJAP et al (2014) Adult neurogenesis and glial oncogenesis: when the process fails. Biomed Res Int 2014:438639PubMedPubMedCentral
2.
go back to reference Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17(Suppl 4):iv1–iv62CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17(Suppl 4):iv1–iv62CrossRefPubMedPubMedCentral
3.
go back to reference Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMed Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMed
4.
go back to reference Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology 18:16–26CrossRefPubMed Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology 18:16–26CrossRefPubMed
5.
6.
go back to reference Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872CrossRefPubMed Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872CrossRefPubMed
7.
go back to reference Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neuro-Oncol 75:5–14CrossRef Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neuro-Oncol 75:5–14CrossRef
9.
go back to reference Chiang JC, Ellison DW (2017) Molecular pathology of paediatric central nervous system tumours. J Pathol 241:159–172CrossRefPubMed Chiang JC, Ellison DW (2017) Molecular pathology of paediatric central nervous system tumours. J Pathol 241:159–172CrossRefPubMed
10.
go back to reference Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14:651–661 Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14:651–661
11.
go back to reference Blümcke I, Müller S, Buslei R et al (2004) Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Acta Neuropathol 108:89–96CrossRefPubMed Blümcke I, Müller S, Buslei R et al (2004) Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Acta Neuropathol 108:89–96CrossRefPubMed
12.
go back to reference Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596CrossRefPubMedPubMedCentral Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596CrossRefPubMedPubMedCentral
13.
go back to reference Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873CrossRefPubMedPubMedCentral Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873CrossRefPubMedPubMedCentral
14.
go back to reference Cancer Genome Atlas Research Network, Brat DJ, RGW V et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRef Cancer Genome Atlas Research Network, Brat DJ, RGW V et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRef
15.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of Tumours of the central nervous system (revised 4th edition). IARC, Lyon Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of Tumours of the central nervous system (revised 4th edition). IARC, Lyon
16.
go back to reference Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRefPubMedPubMedCentral Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRefPubMedPubMedCentral
18.
go back to reference Ohgaki H, Kleihues P (2012) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772CrossRefPubMed Ohgaki H, Kleihues P (2012) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772CrossRefPubMed
19.
go back to reference Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007CrossRefPubMed Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007CrossRefPubMed
22.
go back to reference Chen L, Voronovich Z, Clark K et al (2014) Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology 16:1478–1483CrossRefPubMedPubMedCentral Chen L, Voronovich Z, Clark K et al (2014) Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology 16:1478–1483CrossRefPubMedPubMedCentral
23.
go back to reference Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114CrossRefPubMed Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114CrossRefPubMed
24.
go back to reference Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30CrossRefPubMedPubMedCentral Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30CrossRefPubMedPubMedCentral
25.
go back to reference Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110:6021–6026CrossRefPubMedPubMedCentral Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110:6021–6026CrossRefPubMedPubMedCentral
26.
go back to reference Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722CrossRefPubMedPubMedCentral Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722CrossRefPubMedPubMedCentral
27.
go back to reference Killela PJ, Pirozzi CJ, Healy P et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5:1515–1525CrossRefPubMedPubMedCentral Killela PJ, Pirozzi CJ, Healy P et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5:1515–1525CrossRefPubMedPubMedCentral
28.
go back to reference Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRefPubMedPubMedCentral Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRefPubMedPubMedCentral
30.
go back to reference Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146CrossRefPubMed Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146CrossRefPubMed
32.
go back to reference Rodriguez FJ, Tihan T, Lin D et al (2014) Clinicopathologic features of pediatric oligodendrogliomas. Am J Surg Pathol 38:1058–1070PubMedPubMedCentral Rodriguez FJ, Tihan T, Lin D et al (2014) Clinicopathologic features of pediatric oligodendrogliomas. Am J Surg Pathol 38:1058–1070PubMedPubMedCentral
33.
go back to reference Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed
34.
35.
go back to reference Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580CrossRefPubMed Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580CrossRefPubMed
37.
go back to reference Hake SB, Garcia BA, Duncan EM et al (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568CrossRefPubMed Hake SB, Garcia BA, Duncan EM et al (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568CrossRefPubMed
38.
go back to reference Jansen MHA, van Zanten SEMV, Heymans MW et al (2016) Commentary on “Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes.”. Acta Neuropathol 131:793–794CrossRefPubMed Jansen MHA, van Zanten SEMV, Heymans MW et al (2016) Commentary on “Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes.”. Acta Neuropathol 131:793–794CrossRefPubMed
39.
go back to reference Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827CrossRefPubMedPubMedCentral Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827CrossRefPubMedPubMedCentral
40.
go back to reference Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753CrossRefPubMedPubMedCentral Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753CrossRefPubMedPubMedCentral
41.
go back to reference Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef
42.
go back to reference Malzkorn B, Reifenberger G (2016) Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Curr Opin Oncol 28:494–501CrossRefPubMed Malzkorn B, Reifenberger G (2016) Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Curr Opin Oncol 28:494–501CrossRefPubMed
43.
go back to reference Hartmann C, Hentschel B, Simon M et al (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 19:5146–5157CrossRefPubMed Hartmann C, Hentschel B, Simon M et al (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 19:5146–5157CrossRefPubMed
44.
go back to reference Weller M, Kaulich K, Hentschel B et al (2014) Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer 134:2437–2447CrossRefPubMed Weller M, Kaulich K, Hentschel B et al (2014) Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer 134:2437–2447CrossRefPubMed
45.
go back to reference Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMed Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMed
46.
go back to reference Bush NAO, Butowski N (2017) The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 19:26CrossRefPubMed Bush NAO, Butowski N (2017) The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 19:26CrossRefPubMed
47.
go back to reference Takami H, Yoshida A, Fukushima S et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25:256–265CrossRefPubMed Takami H, Yoshida A, Fukushima S et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25:256–265CrossRefPubMed
48.
go back to reference Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral
49.
go back to reference Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450CrossRefPubMedPubMedCentral Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450CrossRefPubMedPubMedCentral
50.
go back to reference Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437CrossRefPubMed Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437CrossRefPubMed
52.
go back to reference Sahm F, Schrimpf D, Jones DTW et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910CrossRefPubMed Sahm F, Schrimpf D, Jones DTW et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910CrossRefPubMed
53.
go back to reference Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed
54.
go back to reference Zawlik I, Vaccarella S, Kita D et al (2009) Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32:21–29CrossRefPubMed Zawlik I, Vaccarella S, Kita D et al (2009) Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32:21–29CrossRefPubMed
55.
go back to reference Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma. Cancer Res 64:6892–6899CrossRefPubMed Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma. Cancer Res 64:6892–6899CrossRefPubMed
56.
go back to reference McDonald KL, Tabone T, Nowak AK, Erber WN (2015) Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol Lett 9:2063–2067PubMedPubMedCentral McDonald KL, Tabone T, Nowak AK, Erber WN (2015) Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol Lett 9:2063–2067PubMedPubMedCentral
57.
go back to reference Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMed Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMed
58.
go back to reference Cahill DP, Levine KK, Betensky RA et al (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13:2038–2045CrossRefPubMedPubMedCentral Cahill DP, Levine KK, Betensky RA et al (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13:2038–2045CrossRefPubMedPubMedCentral
59.
go back to reference Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMed Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMed
61.
go back to reference Alexandrescu S, Korshunov A, Lai SH et al (2016) Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas—same entity or first cousins? Brain Pathol 26:215–223CrossRefPubMed Alexandrescu S, Korshunov A, Lai SH et al (2016) Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas—same entity or first cousins? Brain Pathol 26:215–223CrossRefPubMed
62.
go back to reference Kleinschmidt-DeMasters BK, Aisner DL, Foreman NK (2015) BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am J Surg Pathol 39:528–540CrossRefPubMedPubMedCentral Kleinschmidt-DeMasters BK, Aisner DL, Foreman NK (2015) BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am J Surg Pathol 39:528–540CrossRefPubMedPubMedCentral
63.
go back to reference Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698CrossRefPubMedPubMedCentral Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698CrossRefPubMedPubMedCentral
64.
go back to reference Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258CrossRefPubMedPubMedCentral Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258CrossRefPubMedPubMedCentral
65.
go back to reference Korshunov A, Capper D, Reuss D et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146CrossRefPubMed Korshunov A, Capper D, Reuss D et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146CrossRefPubMed
66.
go back to reference Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678CrossRefPubMed Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678CrossRefPubMed
67.
go back to reference Ferris SP, Goode B, Joseph NM et al (2016) IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age. Acta Neuropathol 132:153–155CrossRefPubMedPubMedCentral Ferris SP, Goode B, Joseph NM et al (2016) IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age. Acta Neuropathol 132:153–155CrossRefPubMedPubMedCentral
68.
go back to reference Johansson G, Andersson U, Melin B (2016) Recent developments in brain tumor predisposing syndromes. Acta Oncol 55:401–411CrossRefPubMed Johansson G, Andersson U, Melin B (2016) Recent developments in brain tumor predisposing syndromes. Acta Oncol 55:401–411CrossRefPubMed
69.
go back to reference Garcia MA, Solomon DA, Haas-Kogan DA (2016) Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncol 12:1493–1506CrossRefPubMedPubMedCentral Garcia MA, Solomon DA, Haas-Kogan DA (2016) Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncol 12:1493–1506CrossRefPubMedPubMedCentral
70.
71.
go back to reference Bandopadhayay P, Ramkissoon LA, Jain P et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48:273–282CrossRefPubMedPubMedCentral Bandopadhayay P, Ramkissoon LA, Jain P et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48:273–282CrossRefPubMedPubMedCentral
72.
go back to reference Heaven MR, Flint D, Randall SM et al (2016) Composition of rosenthal fibers, the protein aggregate hallmark of Alexander disease. J Proteome Res 15:2265–2282CrossRefPubMedPubMedCentral Heaven MR, Flint D, Randall SM et al (2016) Composition of rosenthal fibers, the protein aggregate hallmark of Alexander disease. J Proteome Res 15:2265–2282CrossRefPubMedPubMedCentral
73.
74.
go back to reference Bar EE, Lin A, Tihan T et al (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887CrossRefPubMed Bar EE, Lin A, Tihan T et al (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887CrossRefPubMed
75.
go back to reference Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749CrossRefPubMedPubMedCentral Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749CrossRefPubMedPubMedCentral
76.
77.
go back to reference Tihan T, Fisher PG, Kepner JL et al (1999) Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58:1061–1068CrossRefPubMed Tihan T, Fisher PG, Kepner JL et al (1999) Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58:1061–1068CrossRefPubMed
78.
go back to reference Ceppa EP, Bouffet E, Griebel R et al (2006) The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J Neuro-Oncol 81:191–196CrossRef Ceppa EP, Bouffet E, Griebel R et al (2006) The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J Neuro-Oncol 81:191–196CrossRef
79.
go back to reference Kleinschmidt-DeMasters BK, Donson AM, Vogel H, Foreman NK (2015) Pilomyxoid astrocytoma (PMA) shows significant differences in gene expression vs. pilocytic astrocytoma (PA) and variable tendency toward maturation to PA. Brain Pathol 25:429–440CrossRefPubMedPubMedCentral Kleinschmidt-DeMasters BK, Donson AM, Vogel H, Foreman NK (2015) Pilomyxoid astrocytoma (PMA) shows significant differences in gene expression vs. pilocytic astrocytoma (PA) and variable tendency toward maturation to PA. Brain Pathol 25:429–440CrossRefPubMedPubMedCentral
80.
go back to reference Perkins SM, Mitra N, Fei W, Shinohara ET (2012) Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neuro-Oncol 110:99–104CrossRef Perkins SM, Mitra N, Fei W, Shinohara ET (2012) Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neuro-Oncol 110:99–104CrossRef
81.
go back to reference Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405CrossRefPubMed Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405CrossRefPubMed
82.
go back to reference Koelsche C, Sahm F, Wöhrer A et al (2014) BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol 24:221–229CrossRefPubMed Koelsche C, Sahm F, Wöhrer A et al (2014) BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol 24:221–229CrossRefPubMed
83.
go back to reference Kwiatkowska J, Wigowska-Sowinska J, Napierala D et al (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707CrossRefPubMed Kwiatkowska J, Wigowska-Sowinska J, Napierala D et al (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707CrossRefPubMed
85.
86.
go back to reference Prayson RA (1997) Myxopapillary ependymomas: a clinicopathologic study of 14 cases including MIB-1 and p53 immunoreactivity. Mod Pathol 10:304–310PubMed Prayson RA (1997) Myxopapillary ependymomas: a clinicopathologic study of 14 cases including MIB-1 and p53 immunoreactivity. Mod Pathol 10:304–310PubMed
87.
go back to reference Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med 8:366ra161CrossRefPubMedPubMedCentral Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med 8:366ra161CrossRefPubMedPubMedCentral
88.
go back to reference Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743CrossRefPubMedPubMedCentral Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743CrossRefPubMedPubMedCentral
89.
90.
go back to reference Wani K, For the Collaborative Ependymoma Research Network, Armstrong TS et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738CrossRefPubMedPubMedCentral Wani K, For the Collaborative Ependymoma Research Network, Armstrong TS et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738CrossRefPubMedPubMedCentral
91.
go back to reference Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157CrossRefPubMedPubMedCentral Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157CrossRefPubMedPubMedCentral
Metadata
Title
Characterization of gliomas: from morphology to molecules
Authors
Sean P. Ferris
Jeffrey W. Hofmann
David A. Solomon
Arie Perry
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 2/2017
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-017-2181-4

Other articles of this Issue 2/2017

Virchows Archiv 2/2017 Go to the issue

Invited Annual Review Issue

Early detection: the impact of genomics