Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2017

01-02-2017 | Retinal Disorders

Association between axial length and horizontal and vertical globe diameters

Authors: Jost B. Jonas, Kyoko Ohno-Matsui, Leonard Holbach, Songhomitra Panda-Jonas

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 2/2017

Login to get access

Abstract

Purpose

To assess relationships between axial length and the horizontal and vertical globe diameters.

Material and methods

The study consisted of enucleated human eyes. The horizontal, vertical, and sagittal diameters were measured.

Results

The study included 135 globes removed because of malignant uveal melanoma (111 globes) or end-stage painful glaucoma (n = 24 eyes). Mean axial, horizontal, and vertical diameters were 24.6 ± 2.6 mm (range: 20–35 mm), 23.7 ± 1.4 mm (range: 21–29 mm) and 23.7 ± 1.4 mm (range: 20–29 mm) respectively. The horizontal diameter and vertical diameter did not differ significantly (P = 0.92), while both were significantly (P < 0.001) shorter than the axial diameter. The horizontal diameter was significantly and linearly correlated with the vertical globe diameter (P < 0.001; regression line: vertical globe diameter = 0.84 × horizontal globe diameter + 3.69). The axial diameter was significantly (P < 0.001) associated with the horizontal diameter and vertical diameters in a bipartite manner. In eyes with an axial length ≤24 mm, horizontal and vertical diameters increased by 0.44 and 0.51 mm, respectively, for each mm increase in axial diameter, while in eyes with an axial length >24 mm, the horizontal and vertical globe diameter increased by a lower amount of 0.19 and 0.21 mm, respectively, for each mm increase in axial diameter.

Conclusions

Myopic enlargement of the globe beyond an axial length of 24 mm takes place predominantly in the sagittal axis, leading to a change in the globe form from a sphere to an elongated form. It fits with the notion that myopic elongation may occur by an elongation of the eye walls in regions close to the globe’s equator.
Literature
2.
go back to reference Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilk 38:277–290 Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilk 38:277–290
3.
go back to reference Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90:277–284CrossRefPubMed Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90:277–284CrossRefPubMed
4.
go back to reference Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241CrossRefPubMed Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241CrossRefPubMed
5.
6.
go back to reference Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450CrossRefPubMed Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450CrossRefPubMed
7.
go back to reference Liang IC, Shimada N, Tanaka Y, Nagaoka N, Moriyama M, Yoshida T, Ohno-Matsui K (2015) Comparison of clinical features in highly myopic eyes with and without a dome-shaped macula. Ophthalmology 122:1591–1600CrossRefPubMed Liang IC, Shimada N, Tanaka Y, Nagaoka N, Moriyama M, Yoshida T, Ohno-Matsui K (2015) Comparison of clinical features in highly myopic eyes with and without a dome-shaped macula. Ophthalmology 122:1591–1600CrossRefPubMed
8.
go back to reference Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, Chen CX, Xu J, Wang YX, Zhou JQ, You QS (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180CrossRefPubMed Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, Chen CX, Xu J, Wang YX, Zhou JQ, You QS (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180CrossRefPubMed
9.
go back to reference Patil B, Tandon R, Sharma N, Verma M, Upadhyay AD, Gupta V, Sihota R (2015) Corneal changes in childhood glaucoma. Ophthalmology 122:87–92CrossRefPubMed Patil B, Tandon R, Sharma N, Verma M, Upadhyay AD, Gupta V, Sihota R (2015) Corneal changes in childhood glaucoma. Ophthalmology 122:87–92CrossRefPubMed
10.
go back to reference Jonas JB, Holbach L, Panda-Jonas S (2016) Histologic differences between primary high myopia and secondary high myopia due to congenital glaucoma. Acta Ophthalmol. doi:10.1111/aos.12937 Jonas JB, Holbach L, Panda-Jonas S (2016) Histologic differences between primary high myopia and secondary high myopia due to congenital glaucoma. Acta Ophthalmol. doi:10.​1111/​aos.​12937
11.
go back to reference Shen L, You QS, Xu X, Gao F, Zhang Z, Li B, Jonas JB (2016) Scleral and choroidal thickness in secondary high axial myopia. Retina [Epub ahead of print] Shen L, You QS, Xu X, Gao F, Zhang Z, Li B, Jonas JB (2016) Scleral and choroidal thickness in secondary high axial myopia. Retina [Epub ahead of print]
12.
go back to reference Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch’s membrane thickness in high myopia. Acta Ophthalmol 92:e470–e474CrossRefPubMed Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch’s membrane thickness in high myopia. Acta Ophthalmol 92:e470–e474CrossRefPubMed
13.
go back to reference Benavente-Pérez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773CrossRefPubMedPubMedCentral Benavente-Pérez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773CrossRefPubMedPubMedCentral
14.
go back to reference Liu Y, Wildsoet C (2012) The effective add inherent in 2-zone negative lenses inhibits eye growth in myopic young chicks. Invest Ophthalmol Vis Sci 53:5085–5093CrossRefPubMedPubMedCentral Liu Y, Wildsoet C (2012) The effective add inherent in 2-zone negative lenses inhibits eye growth in myopic young chicks. Invest Ophthalmol Vis Sci 53:5085–5093CrossRefPubMedPubMedCentral
15.
go back to reference Rosén R, Lundström L, Unsbo P (2011) Influence of optical defocus on peripheral vision. Invest Ophthalmol Vis Sci 52:318–323CrossRefPubMed Rosén R, Lundström L, Unsbo P (2011) Influence of optical defocus on peripheral vision. Invest Ophthalmol Vis Sci 52:318–323CrossRefPubMed
16.
go back to reference Smith EL 3rd, Hung LF, Huang J (2009) Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vis Res 49:2386–2392CrossRefPubMedPubMedCentral Smith EL 3rd, Hung LF, Huang J (2009) Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vis Res 49:2386–2392CrossRefPubMedPubMedCentral
17.
go back to reference Smith EL 3rd, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51:3864–3873CrossRefPubMedPubMedCentral Smith EL 3rd, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51:3864–3873CrossRefPubMedPubMedCentral
18.
go back to reference Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T, Morita I (2011) Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 118:1626–1637CrossRefPubMed Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T, Morita I (2011) Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 118:1626–1637CrossRefPubMed
19.
go back to reference Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, Bao L, Wang NL, Wang JJ (2010) Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology 117:1585–1594CrossRefPubMed Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, Bao L, Wang NL, Wang JJ (2010) Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology 117:1585–1594CrossRefPubMed
20.
go back to reference Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS One 7:e47237CrossRefPubMedPubMedCentral Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS One 7:e47237CrossRefPubMedPubMedCentral
21.
go back to reference Jonas RA, Wang YX, Yang H, Li JJ, Xu L, Panda-Jonas S, Jonas JB (2015) Optic disc - fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011. PLoS One 10:e0138701CrossRefPubMedPubMedCentral Jonas RA, Wang YX, Yang H, Li JJ, Xu L, Panda-Jonas S, Jonas JB (2015) Optic disc - fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011. PLoS One 10:e0138701CrossRefPubMedPubMedCentral
22.
go back to reference Jonas JB, Wang YX, Zhang Q, Fan YY, Xu L, Wei WB, Jonas RA (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402CrossRefPubMed Jonas JB, Wang YX, Zhang Q, Fan YY, Xu L, Wei WB, Jonas RA (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402CrossRefPubMed
Metadata
Title
Association between axial length and horizontal and vertical globe diameters
Authors
Jost B. Jonas
Kyoko Ohno-Matsui
Leonard Holbach
Songhomitra Panda-Jonas
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 2/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-016-3439-2

Other articles of this Issue 2/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2017 Go to the issue