Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 6/2005

01-06-2005 | Clinical Investigation

Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye

Authors: Shoichi Mizoguchi, Yukihisa Suzuki, Motohiro Kiyosawa, Manabu Mochizuki, Kenji Ishii

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 6/2005

Login to get access

Abstract

Purpose

Positron emission tomography (PET), the blood flow response in the primary visual cortex (V1) to two visual stimuli, low temporal frequency (6 Hz) to activate the parvocellular system, and high temporal frequency (25 Hz) to activate the magnocellular system were used to investigate pathophysiologic mechanism of amblyopia.

Methods

Five women and one man who were aged between 26 and 60 years, who were ophthalmologically normal except for amblyopia, and who had corrected visual acuity in the amblyopic eye of 0.6 or worse were examined. An intravenous injection of the H215O was given, and the regional cerebral blood flow was measured by PET during full-field stimulation with either 6 Hz or 25 Hz flicker to the amblyopic or the sound eye.

Result

The activation of blood flow in the contra-lateral area V1 by the 6-Hz stimulation of the sound eye was greater than that during the stimulation of the amblyopic eye (P<0.05, small volume correction, n=6). With 25-Hz stimulation of the sound and amblyopic eyes, the blood flow in the contra-lateral and ipsi-lateral areas V1 was not significantly different.

Conclusion

The decreased activation of blood flow in the contra-lateral V1 by low temporal frequency stimuli supports the hypothesis that the parvocellular pathway in amblyopic eyes is depressed.
Literature
1.
go back to reference Barnes GR, Hess RF, Dumoulin SO, et al (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol (Lond) 533:281–297CrossRef Barnes GR, Hess RF, Dumoulin SO, et al (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol (Lond) 533:281–297CrossRef
3.
go back to reference Choi MY, Lee KM, Hwang JM, et al (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056CrossRef Choi MY, Lee KM, Hwang JM, et al (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056CrossRef
4.
go back to reference Choi MY, Lee DS, Hwang JM, et al (2002) Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. J Pediatr Ophthalmol Strabismus 39:11–19 Choi MY, Lee DS, Hwang JM, et al (2002) Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. J Pediatr Ophthalmol Strabismus 39:11–19
5.
go back to reference Daw NW (1995) Visual development. Plenum, New York Daw NW (1995) Visual development. Plenum, New York
6.
go back to reference Demer JL (1993) Positron emission tomographic studies of cortical function in human amblyopia. Neurosci Biobehav Rev 17:469–476 Demer JL (1993) Positron emission tomographic studies of cortical function in human amblyopia. Neurosci Biobehav Rev 17:469–476
7.
go back to reference Demer JL, Noorden GK von, Volkow ND, et al (1988) Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. Am J Ophthalmol 105:337–347 Demer JL, Noorden GK von, Volkow ND, et al (1988) Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. Am J Ophthalmol 105:337–347
8.
go back to reference Demer JL, Grafton S, Marg E (1997) Positron-emission tomographic study of human amblyopia with use of defined visual stimuli. J AAPOS 1:158–171 Demer JL, Grafton S, Marg E (1997) Positron-emission tomographic study of human amblyopia with use of defined visual stimuli. J AAPOS 1:158–171
9.
go back to reference Demirci H, Gezer A, Sezen F, et al (2002) Evaluation of the functions of the parvocellular and magnocellular pathways in strabismic amblyopia. J Pediatr Ophthalmol Strabismus 39:215–221 Demirci H, Gezer A, Sezen F, et al (2002) Evaluation of the functions of the parvocellular and magnocellular pathways in strabismic amblyopia. J Pediatr Ophthalmol Strabismus 39:215–221
10.
go back to reference Friston KJ, Frith CD, Liddle PF, et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed Friston KJ, Frith CD, Liddle PF, et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed
11.
go back to reference Goodyear BG, Nicolle DA, Humphrey GK, et al (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913 Goodyear BG, Nicolle DA, Humphrey GK, et al (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913
12.
go back to reference Grigg J, Thomas R, Billson F (1996) Neuronal basis of amblyopia: a review. Ind J Ophthalmol 44:69–76 Grigg J, Thomas R, Billson F (1996) Neuronal basis of amblyopia: a review. Ind J Ophthalmol 44:69–76
13.
go back to reference Herscovitch P, Raichle ME, Kilbourn MR, et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542 Herscovitch P, Raichle ME, Kilbourn MR, et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542
14.
go back to reference Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 6:816–824 Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 6:816–824
15.
go back to reference Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 206:419–436 Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 206:419–436
16.
go back to reference Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Biol 278:377–409 Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Biol 278:377–409
17.
go back to reference Imamura K, Richter H, Fischer H, et al (1997) Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neurosci Lett 225:173–176CrossRef Imamura K, Richter H, Fischer H, et al (1997) Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neurosci Lett 225:173–176CrossRef
18.
go back to reference Kabasakal L, Devranoglu K, Arslan O, et al (1995) Brain SPECT evaluation of the visual cortex in amblyopia. J Nucl Med 36:1170–1174 Kabasakal L, Devranoglu K, Arslan O, et al (1995) Brain SPECT evaluation of the visual cortex in amblyopia. J Nucl Med 36:1170–1174
19.
go back to reference Kawasaki T, Kiyosawa M, Ishii K, et al (1998) Regional cerebral blood flow response to visual stimulation measured quantitatively with PET. Neuro-Ophthalmology 20:79–89CrossRef Kawasaki T, Kiyosawa M, Ishii K, et al (1998) Regional cerebral blood flow response to visual stimulation measured quantitatively with PET. Neuro-Ophthalmology 20:79–89CrossRef
20.
go back to reference Lee KM, Lee SH, Kim NY, et al (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153CrossRef Lee KM, Lee SH, Kim NY, et al (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153CrossRef
21.
go back to reference Miki A, Liu GT, Raz J, et al (2000) Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. Am J Ophthalmol 130:821–824CrossRef Miki A, Liu GT, Raz J, et al (2000) Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. Am J Ophthalmol 130:821–824CrossRef
22.
go back to reference Miki A, Liu GT, Englander SA, et al (2001) Functional magnetic resonance imaging of eye dominance at 4 Tesla. Ophthalmic Res 33:276–282CrossRef Miki A, Liu GT, Englander SA, et al (2001) Functional magnetic resonance imaging of eye dominance at 4 Tesla. Ophthalmic Res 33:276–282CrossRef
23.
go back to reference Noorden GK von, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol 14:674–683 Noorden GK von, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol 14:674–683
24.
go back to reference Noorden GK von, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790 Noorden GK von, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790
25.
go back to reference Mizoguchi S, Suzuki Y, Kiyosawa M, et al (2003) Detection of visual activation of lateral geniculate nucleus by positron emission tomography. Graefes Arch Clin Exp Ophthalmol 241:8–12 Mizoguchi S, Suzuki Y, Kiyosawa M, et al (2003) Detection of visual activation of lateral geniculate nucleus by positron emission tomography. Graefes Arch Clin Exp Ophthalmol 241:8–12
26.
go back to reference Schiller PH, Logothetis NK (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392–398CrossRef Schiller PH, Logothetis NK (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392–398CrossRef
27.
go back to reference Shan Y, Moster ML, Roemer RA, et al (2000) Abnormal function of the parvocellular visual system in anisometropic amblyopia. J Pediatr Ophthalmol Strabismus 37:73–78 Shan Y, Moster ML, Roemer RA, et al (2000) Abnormal function of the parvocellular visual system in anisometropic amblyopia. J Pediatr Ophthalmol Strabismus 37:73–78
28.
go back to reference Worsley KJ, Marrett S, Neelin P, et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73 Worsley KJ, Marrett S, Neelin P, et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73
29.
go back to reference Worsley KJ, Andermann M, Koulis T, et al (1999) Detecting changes in nonisotropic images. Hum Brain Mapp 8:98–101CrossRefPubMed Worsley KJ, Andermann M, Koulis T, et al (1999) Detecting changes in nonisotropic images. Hum Brain Mapp 8:98–101CrossRefPubMed
Metadata
Title
Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye
Authors
Shoichi Mizoguchi
Yukihisa Suzuki
Motohiro Kiyosawa
Manabu Mochizuki
Kenji Ishii
Publication date
01-06-2005
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 6/2005
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-004-1009-5

Other articles of this Issue 6/2005

Graefe's Archive for Clinical and Experimental Ophthalmology 6/2005 Go to the issue