Skip to main content
Top
Published in: Lung 5/2017

01-10-2017

Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung

Authors: Chung-Ming Chen, Yi-Chun Liu, Yue-Jun Chen, Hsiu-Chu Chou

Published in: Lung | Issue 5/2017

Login to get access

Abstract

Purpose

Oxygen therapy is often required to treat newborn infants with respiratory disorders. Prolonged exposure of neonatal rats to hyperoxia reduced alveolar septation, increased terminal air space size, and increased lung fibrosis; these conditions are very similar to those of human bronchopulmonary dysplasia. Epigenetic regulation of gene expression plays a crucial role in bronchopulmonary dysplasia development.

Method

We reared Sprague–Dawley rat pups in either room air (RA, n = 24) or an atmosphere containing 85% O2 (n = 26) from Postnatal Days 1 to 14. Methylated DNA immunoprecipitation (MeDIP) was used to analyze genome-wide DNA methylation in lung tissues of neonatal rats. Hyperoxia-exposed rats exhibited larger air spaces and thinner septa than RA-exposed rats did on Postnatal Day 14. The rats exposed to hyperoxia exhibited significantly higher mean linear intercepts than did the rats exposed to RA. We applied MeDIP next-generation sequencing for profiling changes in DNA methylation in the rat lungs exposed to hyperoxia and RA. We performed bioinformatics and pathway analyses on the raw sequencing data to identify differentially methylated candidate genes.

Results

Our in vivo model revealed that neonatal hyperoxia exposure arrested alveolarization on Postnatal Day 14. We found that the ErbB, actin cytoskeleton, and focal adhesion signaling pathways are epigenetically modulated by exposure to hyperoxia. We demonstrated that hyperoxia exposure contribute in delaying lung development through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in alveolarization.

Conclusions

These data indicate that aberrant DNA methylation and deregulation of the actin cytoskeleton and focal adhesion pathways of lung tissues may be involved in the pathophysiology of hyperoxia-induced arrested alveolarization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Manji JS, O’Kelly CJ, Leung WI et al (2001) Timing of hyperoxic exposure during alveolarization influences damage mediated by leukotrienes. Am J Physiol Cell Mol Physiol 281:L799–L806 Manji JS, O’Kelly CJ, Leung WI et al (2001) Timing of hyperoxic exposure during alveolarization influences damage mediated by leukotrienes. Am J Physiol Cell Mol Physiol 281:L799–L806
2.
go back to reference Chen CM, Wang LF, Chou HC et al (2007) Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res 62:128–133CrossRefPubMed Chen CM, Wang LF, Chou HC et al (2007) Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res 62:128–133CrossRefPubMed
3.
go back to reference Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child Health and Human Development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107:E1CrossRefPubMed Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child Health and Human Development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107:E1CrossRefPubMed
4.
go back to reference Northway WH Jr, Moss RB, Carlisle KB et al (1990) Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323:1793–1799CrossRefPubMed Northway WH Jr, Moss RB, Carlisle KB et al (1990) Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323:1793–1799CrossRefPubMed
6.
7.
go back to reference Castro M, Ramirez MI, Gern JE et al (2009) Strategic plan for pediatric respiratory diseases research: an NHLBI working group report. Proc Am Thorac Soc 6:1–10CrossRefPubMed Castro M, Ramirez MI, Gern JE et al (2009) Strategic plan for pediatric respiratory diseases research: an NHLBI working group report. Proc Am Thorac Soc 6:1–10CrossRefPubMed
8.
go back to reference Chou HC, Lang YD, Wang LF et al (2012) Angiotensin II type 1 receptor antagonist attenuates lung fibrosis in hyperoxia-exposed newborn rats. J Pharmacol Exp Ther 340:169–175CrossRefPubMed Chou HC, Lang YD, Wang LF et al (2012) Angiotensin II type 1 receptor antagonist attenuates lung fibrosis in hyperoxia-exposed newborn rats. J Pharmacol Exp Ther 340:169–175CrossRefPubMed
9.
go back to reference Jiang JS, Lang YD, Chou HC et al (2012) Activation of the renin-angiotensin system in hyperoxia-induced lung fibrosis in neonatal rats. Neonatology 101:47–54CrossRefPubMed Jiang JS, Lang YD, Chou HC et al (2012) Activation of the renin-angiotensin system in hyperoxia-induced lung fibrosis in neonatal rats. Neonatology 101:47–54CrossRefPubMed
10.
go back to reference Su CL, Chou HC, Huang LT et al (2014) Combined effects of maternal inflammation and neonatal hyperoxia on lung fibrosis and RAGE expression in newborn rats. Pediatr Res 75:273–280CrossRefPubMed Su CL, Chou HC, Huang LT et al (2014) Combined effects of maternal inflammation and neonatal hyperoxia on lung fibrosis and RAGE expression in newborn rats. Pediatr Res 75:273–280CrossRefPubMed
11.
go back to reference Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRefPubMed Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRefPubMed
13.
go back to reference Panayiotidis MI, Rancourt RC, Allen CB et al (2004) Hyperoxia induced DNA damage causes decreased DNA methylation in human lung epithelial like A549 cells. Antioxid Redox Signal 6:129–136CrossRefPubMed Panayiotidis MI, Rancourt RC, Allen CB et al (2004) Hyperoxia induced DNA damage causes decreased DNA methylation in human lung epithelial like A549 cells. Antioxid Redox Signal 6:129–136CrossRefPubMed
14.
go back to reference Cuna A, Halloran B, Faye-Petersen O et al (2015) Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am J Respir Cell Mol Biol 53:60–73CrossRefPubMedPubMedCentral Cuna A, Halloran B, Faye-Petersen O et al (2015) Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am J Respir Cell Mol Biol 53:60–73CrossRefPubMedPubMedCentral
15.
go back to reference Roubliova XI, Biard JM, Ophalvens L, Gallot D, Jani JC, Verbeken EK, Van De Ven CP, Tibboel D, Deprest JA (2007) Morphology of the developing fetal lung—the rabbit experimental model. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational Topics in microscopy. Formatex, Badajoz, pp 417–425 Roubliova XI, Biard JM, Ophalvens L, Gallot D, Jani JC, Verbeken EK, Van De Ven CP, Tibboel D, Deprest JA (2007) Morphology of the developing fetal lung—the rabbit experimental model. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational Topics in microscopy. Formatex, Badajoz, pp 417–425
16.
go back to reference Gao C, Li R, Huan J, Li W (2011) Caveolin-1 siRNA increases the pulmonary microvascular and alveolar epithelial permeability in rats. J Trauma 70:210–219CrossRefPubMed Gao C, Li R, Huan J, Li W (2011) Caveolin-1 siRNA increases the pulmonary microvascular and alveolar epithelial permeability in rats. J Trauma 70:210–219CrossRefPubMed
17.
go back to reference Cooney TP, Thurlbeck WM (1982) The radial alveolar count method of Emery and Mithal: a reappraisal 2–intrauterine and early postnatal lung growth. Thorax 37:580–583CrossRefPubMedPubMedCentral Cooney TP, Thurlbeck WM (1982) The radial alveolar count method of Emery and Mithal: a reappraisal 2–intrauterine and early postnatal lung growth. Thorax 37:580–583CrossRefPubMedPubMedCentral
18.
go back to reference Almario B, Wu S, Peng J et al (2012) Pentoxifylline and prevention of hyperoxia-induced lung-injury in neonatal rats. Pediatr Res 71:583–589CrossRefPubMed Almario B, Wu S, Peng J et al (2012) Pentoxifylline and prevention of hyperoxia-induced lung-injury in neonatal rats. Pediatr Res 71:583–589CrossRefPubMed
19.
go back to reference Campbell H, Tomkeieff SI (1952) Calculation of the internal surface of a lung. Nature 170:116–117CrossRefPubMed Campbell H, Tomkeieff SI (1952) Calculation of the internal surface of a lung. Nature 170:116–117CrossRefPubMed
20.
go back to reference Ahlfeld SK, Gao Y, Conway SJ et al (2015) Relationship of structural to functional impairment during alveolar-capillary membrane development. Am J Pathol 185:913–919CrossRefPubMedPubMedCentral Ahlfeld SK, Gao Y, Conway SJ et al (2015) Relationship of structural to functional impairment during alveolar-capillary membrane development. Am J Pathol 185:913–919CrossRefPubMedPubMedCentral
21.
go back to reference Desai LP, Sinclair SE, Chapman KE et al (2007) High tidal volume mechanical ventilation with hyperoxia alters alveolar type II cell adhesion. Am J Physiol Lung Cell Mol Physiol 293:L769–L778CrossRefPubMed Desai LP, Sinclair SE, Chapman KE et al (2007) High tidal volume mechanical ventilation with hyperoxia alters alveolar type II cell adhesion. Am J Physiol Lung Cell Mol Physiol 293:L769–L778CrossRefPubMed
22.
go back to reference Wilhelm KR, Roan E, Ghosh MC et al (2014) Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase. FEBS J 281:957–969CrossRefPubMed Wilhelm KR, Roan E, Ghosh MC et al (2014) Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase. FEBS J 281:957–969CrossRefPubMed
23.
go back to reference Zhang L, Yuan LJ, Zhao S et al (2015) The role of placenta growth factor in the hyperoxia-induced acute lung injury in an animal model. Cell Biochem Funct 33:44–49CrossRefPubMed Zhang L, Yuan LJ, Zhao S et al (2015) The role of placenta growth factor in the hyperoxia-induced acute lung injury in an animal model. Cell Biochem Funct 33:44–49CrossRefPubMed
24.
go back to reference Infusino GA, Jacobson JR (2012) Endothelial FAK as a therapeutic target in disease. Microvasc Res 83:89–96CrossRefPubMed Infusino GA, Jacobson JR (2012) Endothelial FAK as a therapeutic target in disease. Microvasc Res 83:89–96CrossRefPubMed
25.
go back to reference Belvitch P, Dudek SM (2012) Role of FAK in S1P-regulated endothelial permeability. Microvasc Res 3:22–30CrossRef Belvitch P, Dudek SM (2012) Role of FAK in S1P-regulated endothelial permeability. Microvasc Res 3:22–30CrossRef
28.
go back to reference Rao RK, Basuroy S, Rao VU et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-betacatenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481CrossRefPubMedPubMedCentral Rao RK, Basuroy S, Rao VU et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-betacatenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481CrossRefPubMedPubMedCentral
29.
go back to reference Roan E, Wilhelm K, Bada A et al (2012) Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 302:L1235–L1241CrossRefPubMedPubMedCentral Roan E, Wilhelm K, Bada A et al (2012) Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 302:L1235–L1241CrossRefPubMedPubMedCentral
30.
go back to reference Lowenstein EJ, Daly RJ, Batzer AG et al (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442CrossRefPubMed Lowenstein EJ, Daly RJ, Batzer AG et al (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442CrossRefPubMed
31.
go back to reference Roth-Kleiner M, Post M (2005) Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40:113–114CrossRefPubMed Roth-Kleiner M, Post M (2005) Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40:113–114CrossRefPubMed
32.
go back to reference Plosa EJ, Young LR, Gulleman PM et al (2014) Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 141:4751–4762CrossRefPubMedPubMedCentral Plosa EJ, Young LR, Gulleman PM et al (2014) Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 141:4751–4762CrossRefPubMedPubMedCentral
Metadata
Title
Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung
Authors
Chung-Ming Chen
Yi-Chun Liu
Yue-Jun Chen
Hsiu-Chu Chou
Publication date
01-10-2017
Publisher
Springer US
Published in
Lung / Issue 5/2017
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-017-0036-z

Other articles of this Issue 5/2017

Lung 5/2017 Go to the issue