Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 6/2022

Open Access 30-09-2021 | Schizophrenia | Invited Review

The role of microglia in neuropsychiatric disorders and suicide

Authors: Ralf Brisch, Szymon Wojtylak, Arthur Saniotis, Johann Steiner, Tomasz Gos, Jaliya Kumaratilake, Maciej Henneberg, Rainer Wolf

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 6/2022

Login to get access

Abstract

This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Literature
2.
go back to reference Ben Achour SB, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445PubMedCrossRef Ben Achour SB, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445PubMedCrossRef
3.
go back to reference Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunpathol 31:513–525CrossRef Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunpathol 31:513–525CrossRef
4.
go back to reference Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158:1030–1038PubMedCrossRef Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158:1030–1038PubMedCrossRef
5.
go back to reference Nakagawa Y, Chiba K (2014) Role of microglial M1/M2 polarisation in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 7:1028–1048PubMedPubMedCentralCrossRef Nakagawa Y, Chiba K (2014) Role of microglial M1/M2 polarisation in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 7:1028–1048PubMedPubMedCentralCrossRef
6.
go back to reference Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuro-transmission and neurogenesis in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 48:277–286CrossRef Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuro-transmission and neurogenesis in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 48:277–286CrossRef
7.
go back to reference Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extravesicular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:476PubMedPubMedCentralCrossRef Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extravesicular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:476PubMedPubMedCentralCrossRef
8.
go back to reference Mayhew J, Beart PM, Walker FR (2015) Astrocyte and microglial control of glutamatergic signaling: A primer on understanding the disruptive role of chronic stress. J Neuroendocrin 27:498–506CrossRef Mayhew J, Beart PM, Walker FR (2015) Astrocyte and microglial control of glutamatergic signaling: A primer on understanding the disruptive role of chronic stress. J Neuroendocrin 27:498–506CrossRef
9.
go back to reference Howes OD, McCutcheon R (2017) Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 7:e1024PubMedPubMedCentralCrossRef Howes OD, McCutcheon R (2017) Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 7:e1024PubMedPubMedCentralCrossRef
10.
go back to reference Lenz KM, McCarthy MM (2015) A starring role for microglia in brain sex differences. Neuroscientist 21:306–321PubMedCrossRef Lenz KM, McCarthy MM (2015) A starring role for microglia in brain sex differences. Neuroscientist 21:306–321PubMedCrossRef
11.
go back to reference Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665PubMedCrossRef Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665PubMedCrossRef
12.
go back to reference Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173:692–702PubMedCrossRef Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173:692–702PubMedCrossRef
14.
go back to reference De Picker LJ, Morrens M, Chance SA, Boche D (2017) Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry 8:238PubMedPubMedCentralCrossRef De Picker LJ, Morrens M, Chance SA, Boche D (2017) Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry 8:238PubMedPubMedCentralCrossRef
15.
go back to reference Meyer U, Feldon J, Dammann O (2013) Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation. Prog Neuro-Psychopharmacol Biol Psychiatry 42:20–34CrossRef Meyer U, Feldon J, Dammann O (2013) Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation. Prog Neuro-Psychopharmacol Biol Psychiatry 42:20–34CrossRef
16.
go back to reference Lurie DI (2018) An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exper Neurosci 12:1–11CrossRef Lurie DI (2018) An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exper Neurosci 12:1–11CrossRef
17.
go back to reference Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 161:102–122PubMedCrossRef Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 161:102–122PubMedCrossRef
18.
go back to reference Chew LJ, Fusar-Poli P, Schmitz T (2013) Oligodendrocyte alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 35:102–129PubMedCrossRef Chew LJ, Fusar-Poli P, Schmitz T (2013) Oligodendrocyte alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 35:102–129PubMedCrossRef
19.
go back to reference Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierck RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: A PET study. J Nucl Med 50:1801–1807PubMedCrossRef Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierck RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: A PET study. J Nucl Med 50:1801–1807PubMedCrossRef
20.
go back to reference Skaper SD, Facci L, Giusti P (2014) Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets 13:1654–1666PubMedCrossRef Skaper SD, Facci L, Giusti P (2014) Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets 13:1654–1666PubMedCrossRef
21.
go back to reference Filiou MD, Arefin AS, Moscato P, Graeber MB (2014) Neuroinflammation differs categorically from inflammation: transcriptomes of Alzheimer´s disease, Parkinson´s disease, schizophrenia and inflammatory diseases compared. Neurogenetics 15:201–212PubMedCrossRef Filiou MD, Arefin AS, Moscato P, Graeber MB (2014) Neuroinflammation differs categorically from inflammation: transcriptomes of Alzheimer´s disease, Parkinson´s disease, schizophrenia and inflammatory diseases compared. Neurogenetics 15:201–212PubMedCrossRef
22.
go back to reference Kim YK, Na KS, Myint AM, Leonard BE (2016) The role of pro-inflammatory cytokines in neuroinflammation and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 64:277–284CrossRef Kim YK, Na KS, Myint AM, Leonard BE (2016) The role of pro-inflammatory cytokines in neuroinflammation and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 64:277–284CrossRef
24.
go back to reference Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci 12:323PubMedPubMedCentralCrossRef Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci 12:323PubMedPubMedCentralCrossRef
25.
go back to reference Volk DW (2017) Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol Dis 99:58–65PubMedCrossRef Volk DW (2017) Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol Dis 99:58–65PubMedCrossRef
26.
go back to reference Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61:62–70PubMedCrossRef Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61:62–70PubMedCrossRef
27.
go back to reference Bollinger JL, Wohleb ES (2019) The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci Lett. 711:134369PubMedCrossRef Bollinger JL, Wohleb ES (2019) The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci Lett. 711:134369PubMedCrossRef
28.
go back to reference Zhao H, Alm A, Chen Q, Eusman MA, Pal A, Eguchi S et al (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anasth 118:504–516CrossRef Zhao H, Alm A, Chen Q, Eusman MA, Pal A, Eguchi S et al (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anasth 118:504–516CrossRef
29.
go back to reference Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD (2020) Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front Psychiatry 11:204PubMedPubMedCentralCrossRef Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD (2020) Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front Psychiatry 11:204PubMedPubMedCentralCrossRef
30.
go back to reference Müller N, Myint AM, Schwarz MJ (2009) The impact of neuron in the dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialog Clin Neurosci 11:319–332CrossRef Müller N, Myint AM, Schwarz MJ (2009) The impact of neuron in the dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialog Clin Neurosci 11:319–332CrossRef
31.
go back to reference Réus GZ, Fries GR, Stertz L, Badaway M, Passos IC, Barichello T, Kupczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154PubMedCrossRef Réus GZ, Fries GR, Stertz L, Badaway M, Passos IC, Barichello T, Kupczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154PubMedCrossRef
32.
go back to reference Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology. Schizophr Res 161:4–18PubMedCrossRef Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology. Schizophr Res 161:4–18PubMedCrossRef
33.
go back to reference Leza JC, Garcia-Bueno B, Bioque M, Arango C, Parellada M, Do K, O’Donnell P, Bernardo M (2015) Inflammation in schizophrenia: A question of balance. Neuroscience Biobehav. Rev. 55:612–626CrossRef Leza JC, Garcia-Bueno B, Bioque M, Arango C, Parellada M, Do K, O’Donnell P, Bernardo M (2015) Inflammation in schizophrenia: A question of balance. Neuroscience Biobehav. Rev. 55:612–626CrossRef
34.
go back to reference Hong H, Kim BS, Im H-I (2016) Pathophysiological role of neuroinflammation in neurodegnerative diseases and psychiatric disorders. Int Neurolurol J 20(Suppl 1):S2-7CrossRef Hong H, Kim BS, Im H-I (2016) Pathophysiological role of neuroinflammation in neurodegnerative diseases and psychiatric disorders. Int Neurolurol J 20(Suppl 1):S2-7CrossRef
35.
go back to reference Tay TL, Bléchade C, D’Andrea I, St-Pierre MK, Henry MS, Roumier A, Tremblay ME (2018) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10:421PubMedPubMedCentralCrossRef Tay TL, Bléchade C, D’Andrea I, St-Pierre MK, Henry MS, Roumier A, Tremblay ME (2018) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10:421PubMedPubMedCentralCrossRef
36.
go back to reference Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchsese E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376PubMedCrossRef Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchsese E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376PubMedCrossRef
37.
go back to reference Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM (2012) Microglia in the cerebral cortex in autism. J Autism Dev Disord 42:2569–2584PubMedCrossRef Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM (2012) Microglia in the cerebral cortex in autism. J Autism Dev Disord 42:2569–2584PubMedCrossRef
39.
go back to reference Racki V, Petric D, Kucic N, Grezeta N, Jurdana K, Roncevic-Grzeta I (2016) Cortical gray matter loss in schizophrenia: Could microglia be the culprit? Med. Hypotheses 88:18–21CrossRef Racki V, Petric D, Kucic N, Grezeta N, Jurdana K, Roncevic-Grzeta I (2016) Cortical gray matter loss in schizophrenia: Could microglia be the culprit? Med. Hypotheses 88:18–21CrossRef
40.
go back to reference Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21:1009–1026PubMedPubMedCentralCrossRef Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21:1009–1026PubMedPubMedCentralCrossRef
41.
go back to reference van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, Sommer IEC (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7:e1075PubMedPubMedCentralCrossRef van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, Sommer IEC (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7:e1075PubMedPubMedCentralCrossRef
42.
go back to reference Foster R, Kandanearatchi A, Beasley C, Williams B, Khan N, Fagerhol MF, Everall IP (2006) Calprotectin in microglia from frontal cortex is up-regulated in schizophrenia. Evidence for an inflammatory process?. Eur J Neurosci 24:3561–3566PubMedCrossRef Foster R, Kandanearatchi A, Beasley C, Williams B, Khan N, Fagerhol MF, Everall IP (2006) Calprotectin in microglia from frontal cortex is up-regulated in schizophrenia. Evidence for an inflammatory process?. Eur J Neurosci 24:3561–3566PubMedCrossRef
43.
go back to reference Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene 1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862PubMedCrossRef Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene 1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862PubMedCrossRef
45.
go back to reference Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, Bloomfield MAP, Bonoldi I, Kalk N, Turkheimer F, McGuire P, de Paola V, Howes OD (2016) Microglial activity in people at ultra risk of psychosis and in schizophrenia: An [11C] PBR28 PET brain imaging study. Am J Psychiatry 173:44–52PubMedCrossRef Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, Bloomfield MAP, Bonoldi I, Kalk N, Turkheimer F, McGuire P, de Paola V, Howes OD (2016) Microglial activity in people at ultra risk of psychosis and in schizophrenia: An [11C] PBR28 PET brain imaging study. Am J Psychiatry 173:44–52PubMedCrossRef
46.
go back to reference Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, Suridjan I, Wilson AA, Meyer JH, Remington G, Houle S, Rusjan PM, Mizrahi R (2017) Imaging microglial activation in untreated first-episode psychosis: a PET study with [18] FEPPA. Am J Psychiatry 174:118–124PubMedCrossRef Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, Suridjan I, Wilson AA, Meyer JH, Remington G, Houle S, Rusjan PM, Mizrahi R (2017) Imaging microglial activation in untreated first-episode psychosis: a PET study with [18] FEPPA. Am J Psychiatry 174:118–124PubMedCrossRef
47.
go back to reference Di Biase MA, Zalesky A, O’Keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD (2017) PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl. Psychiatry 7:e1225PubMedPubMedCentralCrossRef Di Biase MA, Zalesky A, O’Keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD (2017) PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl. Psychiatry 7:e1225PubMedPubMedCentralCrossRef
48.
go back to reference Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IEC, Howes OD (2019) Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Medicine 49:2186–2196CrossRef Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IEC, Howes OD (2019) Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Medicine 49:2186–2196CrossRef
50.
go back to reference Banati R, Hickie IB (2009) Therapeutic signposts: using biomarkers to guide better treatment of schizophrenia. MJA 190:S26–S32PubMed Banati R, Hickie IB (2009) Therapeutic signposts: using biomarkers to guide better treatment of schizophrenia. MJA 190:S26–S32PubMed
51.
go back to reference Burmester GR, Pezutto A (2003) Color atlas of immunology. Thieme Publishers Stuttgart New York. pp. 1–322 Burmester GR, Pezutto A (2003) Color atlas of immunology. Thieme Publishers Stuttgart New York. pp. 1–322
52.
go back to reference Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatry Res 42:151–157CrossRef Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatry Res 42:151–157CrossRef
53.
go back to reference Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271:126–128PubMedCrossRef Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271:126–128PubMedCrossRef
54.
go back to reference Radewicz K, Garey LJ, Gentleman S, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150PubMedCrossRef Radewicz K, Garey LJ, Gentleman S, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150PubMedCrossRef
55.
go back to reference Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasenik E (2005) Qualitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 43:157–165 Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasenik E (2005) Qualitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 43:157–165
56.
go back to reference Krause D, Wagner J, Matz J, Weidinger E, Obermeier M, Riedel M, Gruber R, Schwarz M, Mueller N (2012) Monocytic HLA DR antigens in schizophrenic patients. Neurosci Res 72:87–93PubMedCrossRef Krause D, Wagner J, Matz J, Weidinger E, Obermeier M, Riedel M, Gruber R, Schwarz M, Mueller N (2012) Monocytic HLA DR antigens in schizophrenic patients. Neurosci Res 72:87–93PubMedCrossRef
57.
go back to reference Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B (2006) Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112:305–3016PubMedCrossRef Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B (2006) Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112:305–3016PubMedCrossRef
58.
go back to reference Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214PubMedCrossRef Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214PubMedCrossRef
59.
go back to reference Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Müller UJ, Bernstein HG, Bogerts B (2012) Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual schizophrenia versus paranoid schizophrenia: Further evidence for disease course-related immune alterations. Brain Behav Imm 26:1273–1279CrossRef Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Müller UJ, Bernstein HG, Bogerts B (2012) Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual schizophrenia versus paranoid schizophrenia: Further evidence for disease course-related immune alterations. Brain Behav Imm 26:1273–1279CrossRef
60.
go back to reference Sneeboer MAM, Snijders GJLJ, Berdowski WM, Fernandez-Andreu A, Psychiatric Donor Program of the Netherlands Brain Bank (NBB-Psych), van Mierlo HC, van Berlekom AB, Litjens M, Kahn RS, Hol EM, de Witte LD (2019) Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry 9:153 Sneeboer MAM, Snijders GJLJ, Berdowski WM, Fernandez-Andreu A, Psychiatric Donor Program of the Netherlands Brain Bank (NBB-Psych), van Mierlo HC, van Berlekom AB, Litjens M, Kahn RS, Hol EM, de Witte LD (2019) Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry 9:153
61.
go back to reference Shigeta Y, Ishii H, Takagi S, Yoshitake Y, Hirano T, Takata H et al (1980) HLA antigens as immunogenetic markers of alcoholism and alcoholic liver diseases. Pharmacol Biochem Beh 13:89–94CrossRef Shigeta Y, Ishii H, Takagi S, Yoshitake Y, Hirano T, Takata H et al (1980) HLA antigens as immunogenetic markers of alcoholism and alcoholic liver diseases. Pharmacol Biochem Beh 13:89–94CrossRef
62.
go back to reference Cook RT, Gurvey MJ, Booth BM, Goeken JA, Stewart B, Noel M (1991) Activated CD-8 cells and HLA-DR expression in alcoholics without overt liver disease. J Clin Immunol 11:246–253PubMedCrossRef Cook RT, Gurvey MJ, Booth BM, Goeken JA, Stewart B, Noel M (1991) Activated CD-8 cells and HLA-DR expression in alcoholics without overt liver disease. J Clin Immunol 11:246–253PubMedCrossRef
63.
go back to reference Laso FJ, Madruga JF, San Miguel JF, López M, Alvarez M, Orfao A (1996) Long lasting immunological effects of ethanol after withdrawal. Cytometry 26:275–280PubMedCrossRef Laso FJ, Madruga JF, San Miguel JF, López M, Alvarez M, Orfao A (1996) Long lasting immunological effects of ethanol after withdrawal. Cytometry 26:275–280PubMedCrossRef
64.
go back to reference Pan Y, Wang KS, Wang L, Wu LY (2013) Common variants in HLA-DRA gene are associated with alcohol dependence in two Caucasian samples. J Mol Neurosci 49:574–581PubMedCrossRef Pan Y, Wang KS, Wang L, Wu LY (2013) Common variants in HLA-DRA gene are associated with alcohol dependence in two Caucasian samples. J Mol Neurosci 49:574–581PubMedCrossRef
65.
go back to reference Laskaris LE, Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VI, Pantelis C (2016) Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 173:666–680PubMedPubMedCentralCrossRef Laskaris LE, Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VI, Pantelis C (2016) Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 173:666–680PubMedPubMedCentralCrossRef
66.
go back to reference Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B, Wang C, Mysorekar I, Rajagopal L, Waldorf KMA (2019) The fetal origins of mental illness. Am J Obstet Gynecol 221:549–562PubMedPubMedCentralCrossRef Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B, Wang C, Mysorekar I, Rajagopal L, Waldorf KMA (2019) The fetal origins of mental illness. Am J Obstet Gynecol 221:549–562PubMedPubMedCentralCrossRef
67.
go back to reference Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF, Smit AB, Posthuma D, Verheijen MHG (2014) Specific glial functions contribute to schizophrenia susceptibility. Schizophr Bull 40:925–935PubMedCrossRef Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF, Smit AB, Posthuma D, Verheijen MHG (2014) Specific glial functions contribute to schizophrenia susceptibility. Schizophr Bull 40:925–935PubMedCrossRef
68.
go back to reference Arinami T, Otsuka Y, Hamaguchi H, Itokawa M, Aoki J, Shibuya H, Okubo Y, Jwawaki Y, Ota K, Enguchi H, Tagaya H, Yano S, Shimuzu H, Torio M (1998) Evidence supporting an association between the DRB1 gene and schizophrenia in Japanese. Schizophr Res 32:81–86PubMedCrossRef Arinami T, Otsuka Y, Hamaguchi H, Itokawa M, Aoki J, Shibuya H, Okubo Y, Jwawaki Y, Ota K, Enguchi H, Tagaya H, Yano S, Shimuzu H, Torio M (1998) Evidence supporting an association between the DRB1 gene and schizophrenia in Japanese. Schizophr Res 32:81–86PubMedCrossRef
69.
go back to reference Sasaki T, Matsushita M, Nanko S, Fukuda R, Kennedy JL, Tokunga K (1999) Schizophrenia and HLA-DRB1 gene in the Japanese population. Am J Psychiatry 156:771–773PubMedCrossRef Sasaki T, Matsushita M, Nanko S, Fukuda R, Kennedy JL, Tokunga K (1999) Schizophrenia and HLA-DRB1 gene in the Japanese population. Am J Psychiatry 156:771–773PubMedCrossRef
70.
go back to reference Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47:1–12PubMedCrossRef Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47:1–12PubMedCrossRef
71.
go back to reference Müller N, Ackenheil M (1998) Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 22:1–33PubMedCrossRef Müller N, Ackenheil M (1998) Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 22:1–33PubMedCrossRef
72.
go back to reference Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302PubMedPubMedCentralCrossRef Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302PubMedPubMedCentralCrossRef
75.
go back to reference Nelson LH, Saulsbery AI, Lenz KM (2019) Small cells with big implications: microglia and sex differences in brain development, plasticity and behavioral health. Prog Neurobiol 176:103–109PubMedCrossRef Nelson LH, Saulsbery AI, Lenz KM (2019) Small cells with big implications: microglia and sex differences in brain development, plasticity and behavioral health. Prog Neurobiol 176:103–109PubMedCrossRef
76.
go back to reference Osborne BF, Turano A, Caulfield JI, Schwarz JM (2019) Sex- and region-specific differences in microglia phenotype and characterization of the peripheral immune response following early-life infection in male and female rats. Neurosci Lett 692:1–9PubMedCrossRef Osborne BF, Turano A, Caulfield JI, Schwarz JM (2019) Sex- and region-specific differences in microglia phenotype and characterization of the peripheral immune response following early-life infection in male and female rats. Neurosci Lett 692:1–9PubMedCrossRef
77.
go back to reference Smolders S, Smolders SMT, Swinnen N, Gärtner A, Rigo J-M, Legendre P, Brone B (2015) Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci 9:301PubMedPubMedCentralCrossRef Smolders S, Smolders SMT, Swinnen N, Gärtner A, Rigo J-M, Legendre P, Brone B (2015) Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci 9:301PubMedPubMedCentralCrossRef
78.
go back to reference Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ (2011) Microglial activation in a neuroinflammational animal model of schizophrenia - a pilot study. Schizophr Res 131:96–100PubMedCrossRef Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ (2011) Microglial activation in a neuroinflammational animal model of schizophrenia - a pilot study. Schizophr Res 131:96–100PubMedCrossRef
79.
go back to reference Shapiro LA, Perez ZD, Foresti ML, Arisi GM, Ribak CE (2009) Morphological andultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 1266:29–36PubMedPubMedCentralCrossRef Shapiro LA, Perez ZD, Foresti ML, Arisi GM, Ribak CE (2009) Morphological andultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 1266:29–36PubMedPubMedCentralCrossRef
80.
go back to reference Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266PubMedCrossRef Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266PubMedCrossRef
81.
go back to reference Manitz MP, Esslinger M, Wachholz S, Plümper J, Friebe A, Juckel G, Wolf RJ (2013) The role of microglia during life span in neuropsychiatric disease — an animal study. Schizophr Res 143:221–222PubMedCrossRef Manitz MP, Esslinger M, Wachholz S, Plümper J, Friebe A, Juckel G, Wolf RJ (2013) The role of microglia during life span in neuropsychiatric disease — an animal study. Schizophr Res 143:221–222PubMedCrossRef
82.
go back to reference Buschert J, Sakalem ME, Saffari R, Hohoff C, Rothermundt M, Arolt V, Zhang W, Ambrée O (2016) Prenatal immune activation in mice blocks the effects of environmental enrichment on explatory behavior and microglia density. Prog Neuro-Psychopharmacol Biol Psych 67:10–20CrossRef Buschert J, Sakalem ME, Saffari R, Hohoff C, Rothermundt M, Arolt V, Zhang W, Ambrée O (2016) Prenatal immune activation in mice blocks the effects of environmental enrichment on explatory behavior and microglia density. Prog Neuro-Psychopharmacol Biol Psych 67:10–20CrossRef
84.
go back to reference World Health Organization (2014) Preventing suicide: a global imperative. pp. 1–92 World Health Organization (2014) Preventing suicide: a global imperative. pp. 1–92
85.
86.
go back to reference American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, ArlingtonCrossRef American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, ArlingtonCrossRef
87.
go back to reference Baker K, Halliday GM, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301:147–161PubMedCrossRef Baker K, Halliday GM, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301:147–161PubMedCrossRef
88.
go back to reference Stockmeier CA, Shapiro LA, Haycock JW, Thompson PA, Lowy MT (1996) Quantitative subregional distribution of serotonin1A receptors and serotonin transporters in the human dorsale raphe. Brain Res 727:1–12PubMedCrossRef Stockmeier CA, Shapiro LA, Haycock JW, Thompson PA, Lowy MT (1996) Quantitative subregional distribution of serotonin1A receptors and serotonin transporters in the human dorsale raphe. Brain Res 727:1–12PubMedCrossRef
89.
go back to reference Valentino RJ, Commons KG (2005) Peptides that fine-tune the serotonin system. Neuropeptides 39:1–8PubMedCrossRef Valentino RJ, Commons KG (2005) Peptides that fine-tune the serotonin system. Neuropeptides 39:1–8PubMedCrossRef
90.
go back to reference Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhaw A (2008) Serotonergic systems, anxiety, and affective disorder: Focus on the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94PubMedCrossRef Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhaw A (2008) Serotonergic systems, anxiety, and affective disorder: Focus on the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94PubMedCrossRef
91.
go back to reference Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40:557–567PubMedCrossRef Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40:557–567PubMedCrossRef
92.
go back to reference Zhao H, Zhang BL, Yang SJ, Rusak B (2015) The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behav Brain Res 277:89–98PubMedCrossRef Zhao H, Zhang BL, Yang SJ, Rusak B (2015) The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behav Brain Res 277:89–98PubMedCrossRef
94.
go back to reference Bolderini M, Underwood MD, Mann JJ, Arango V (2005) More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res 1041:19–28CrossRef Bolderini M, Underwood MD, Mann JJ, Arango V (2005) More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res 1041:19–28CrossRef
95.
go back to reference Bonkale WL, Murdock S, Janosky JE, Austin MC (2004) Normal levels of tryptophan hydroxylase immunoreactivity in the dorsal raphe of depressed suicide victims. J Neurochem 88:958–964PubMedCrossRef Bonkale WL, Murdock S, Janosky JE, Austin MC (2004) Normal levels of tryptophan hydroxylase immunoreactivity in the dorsal raphe of depressed suicide victims. J Neurochem 88:958–964PubMedCrossRef
96.
go back to reference Bielau H, Mawrin C, Krell D, Agelink MW, Trübner K, Davis R, Gos T, Bogerts B, Bernstein HG, Baumann B (2005) Differences in activation of the dorsal raphe nucleus depending on performance of suicide. Brain Res 1039:43–52PubMedCrossRef Bielau H, Mawrin C, Krell D, Agelink MW, Trübner K, Davis R, Gos T, Bogerts B, Bernstein HG, Baumann B (2005) Differences in activation of the dorsal raphe nucleus depending on performance of suicide. Brain Res 1039:43–52PubMedCrossRef
97.
go back to reference Craven RM, Priddle TH, Coopert SJ, Crow TJ, Esiri MM (2005) The dorsal raphe nucleus in schizophrenia: a post-mortem study of 5-hydroxytryptamine neurons. Neuropathol Appl Neurobiol 31:258–269PubMedCrossRef Craven RM, Priddle TH, Coopert SJ, Crow TJ, Esiri MM (2005) The dorsal raphe nucleus in schizophrenia: a post-mortem study of 5-hydroxytryptamine neurons. Neuropathol Appl Neurobiol 31:258–269PubMedCrossRef
98.
go back to reference Bonkale WL, Turecki G, Austin MC (2006) Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60:81–85PubMedPubMedCentralCrossRef Bonkale WL, Turecki G, Austin MC (2006) Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60:81–85PubMedPubMedCentralCrossRef
99.
go back to reference Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Arango V, Mann J (2006) Neuronal tryptohan hydroxylase mRNA expression in the human dorsal and median raphe nuclei. Neuropsychopharmacol 31:814–824CrossRef Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Arango V, Mann J (2006) Neuronal tryptohan hydroxylase mRNA expression in the human dorsal and median raphe nuclei. Neuropsychopharmacol 31:814–824CrossRef
100.
go back to reference Bach-Mizrachi H, Underwood MD, Tin A, Ellis SP, Mann JJ, Arango V (2008) Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level. Mol Psychiatry 13:507–513PubMedPubMedCentralCrossRef Bach-Mizrachi H, Underwood MD, Tin A, Ellis SP, Mann JJ, Arango V (2008) Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level. Mol Psychiatry 13:507–513PubMedPubMedCentralCrossRef
101.
go back to reference Gos T, Krell D, Brisch R, Bielau H, Trübner K, Steiner J, Bernstein HG, Baumann B (2008) Demonstration of decreased activity of dorsal raphe nucleus neurons in depressed suicidal patients by the AgNOR staining method. J Affect Disord 111:251–260PubMedCrossRef Gos T, Krell D, Brisch R, Bielau H, Trübner K, Steiner J, Bernstein HG, Baumann B (2008) Demonstration of decreased activity of dorsal raphe nucleus neurons in depressed suicidal patients by the AgNOR staining method. J Affect Disord 111:251–260PubMedCrossRef
102.
go back to reference Krzyzanowska M, Steiner J, Karnecki K, Kaliszan M, Brisch R, Wiekowski M, Braun K, Jankowski Z, Gos T (2016) Decreased ribosomal DNA transcription in dorsal raphe differentiates between suicidal and non-suicidal death. Eur Arch Psychiatry Clin Neurosci 266:217–224PubMedCrossRef Krzyzanowska M, Steiner J, Karnecki K, Kaliszan M, Brisch R, Wiekowski M, Braun K, Jankowski Z, Gos T (2016) Decreased ribosomal DNA transcription in dorsal raphe differentiates between suicidal and non-suicidal death. Eur Arch Psychiatry Clin Neurosci 266:217–224PubMedCrossRef
103.
go back to reference Krzyzanowska M, Steiner J, Brisch R, Mawrin C, Busse S, Karnecki K, Jankowski Z, Gos T (2016) Decreased ribosomal DNA transcription in dorsal raphe nucleus is specific for suicide regardless of psychiatric diagnosis. Psychiatry Res 241:43–46PubMedCrossRef Krzyzanowska M, Steiner J, Brisch R, Mawrin C, Busse S, Karnecki K, Jankowski Z, Gos T (2016) Decreased ribosomal DNA transcription in dorsal raphe nucleus is specific for suicide regardless of psychiatric diagnosis. Psychiatry Res 241:43–46PubMedCrossRef
104.
go back to reference Brisch R, Steiner J, Mawrin C, Krzyzanowska M, Jankowski Z, Gos T (2017) Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci 267:403–415PubMedPubMedCentralCrossRef Brisch R, Steiner J, Mawrin C, Krzyzanowska M, Jankowski Z, Gos T (2017) Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci 267:403–415PubMedPubMedCentralCrossRef
105.
go back to reference Bach H, Arango V, Kassir SA, Tsaava TT, Dwork AJ, Mann J, Underwood MD (1997) Alcoholics have more tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei. Alcohol Clin Exp Res 2014(38):1894–1901 Bach H, Arango V, Kassir SA, Tsaava TT, Dwork AJ, Mann J, Underwood MD (1997) Alcoholics have more tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei. Alcohol Clin Exp Res 2014(38):1894–1901
106.
go back to reference Stockmeier CA (1997) Neurobiology of serotonin in depression and suicide. Ann N Y Acad Sci 723:37–45 Stockmeier CA (1997) Neurobiology of serotonin in depression and suicide. Ann N Y Acad Sci 723:37–45
107.
go back to reference Jasinska AJ, Lowry CA, Burmester M (2012) Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 35:395–402PubMedCrossRef Jasinska AJ, Lowry CA, Burmester M (2012) Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 35:395–402PubMedCrossRef
108.
go back to reference Albert PR, Benkelfast C (2013) The neurobiology of depression-revisiting the serotonin hypothesis. II Genetic, epigenetic, and clinical studies. Phil Trans R Soc B 368:20120535 Albert PR, Benkelfast C (2013) The neurobiology of depression-revisiting the serotonin hypothesis. II Genetic, epigenetic, and clinical studies. Phil Trans R Soc B 368:20120535
110.
go back to reference Hahn A, Haeusler D, Kraus C, Höflich AS, Kranz GS, Baldinger P et al (2014) Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Hum Brain Mapping 35:3857–3866CrossRef Hahn A, Haeusler D, Kraus C, Höflich AS, Kranz GS, Baldinger P et al (2014) Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Hum Brain Mapping 35:3857–3866CrossRef
112.
go back to reference Soares JC, Mann J (1997) The functional neuroanatomy of mood disorders. J Psychiatr Res 31:393–432PubMedCrossRef Soares JC, Mann J (1997) The functional neuroanatomy of mood disorders. J Psychiatr Res 31:393–432PubMedCrossRef
113.
go back to reference Underwood MD, Khaibulina AA, Ellis SP, Moran A, Rice PM, Mann J, Arango V (1999) Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol Psychiatry 46:473–483PubMedCrossRef Underwood MD, Khaibulina AA, Ellis SP, Moran A, Rice PM, Mann J, Arango V (1999) Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol Psychiatry 46:473–483PubMedCrossRef
114.
go back to reference Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung SC, Chen JJ, Mann JJ (2001) Seotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacol 25:892–903CrossRef Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung SC, Chen JJ, Mann JJ (2001) Seotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacol 25:892–903CrossRef
115.
go back to reference Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ (2002) Neurobiology of depression. Neuron 34:13–25PubMedCrossRef Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ (2002) Neurobiology of depression. Neuron 34:13–25PubMedCrossRef
116.
go back to reference Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanatomy 26:331–343CrossRef Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanatomy 26:331–343CrossRef
117.
go back to reference Mann JJ (2003) Neurobiology of suicidal behavior. Nature Rev Neurosci 4:819–823CrossRef Mann JJ (2003) Neurobiology of suicidal behavior. Nature Rev Neurosci 4:819–823CrossRef
118.
go back to reference Nemeroff CB, Vale WW (2005) The neurobiology of depression: in roads to treatment and new drug discovery. J Clin Psychiatry 66(Suppl 7):5–13PubMed Nemeroff CB, Vale WW (2005) The neurobiology of depression: in roads to treatment and new drug discovery. J Clin Psychiatry 66(Suppl 7):5–13PubMed
119.
go back to reference Bolderini M, Underwood MD, Mann JJ, Arango V (2008) Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatry Res 42:433–442CrossRef Bolderini M, Underwood MD, Mann JJ, Arango V (2008) Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatry Res 42:433–442CrossRef
120.
go back to reference Matthews PR, Harrison PJ (2012) A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord 137:125–134PubMedPubMedCentralCrossRef Matthews PR, Harrison PJ (2012) A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord 137:125–134PubMedPubMedCentralCrossRef
121.
go back to reference Quesseveur G, Reperant C, David DJ, Gardier AM, Sanchez C, Guiard BP (2013) 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system. Exp Brain Res 226:285–295PubMedCrossRef Quesseveur G, Reperant C, David DJ, Gardier AM, Sanchez C, Guiard BP (2013) 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system. Exp Brain Res 226:285–295PubMedCrossRef
122.
go back to reference Challis C, Berton O (2015) Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional in depression. ALS Chem Neurosci 6:1040–1054CrossRef Challis C, Berton O (2015) Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional in depression. ALS Chem Neurosci 6:1040–1054CrossRef
123.
go back to reference Rahn KA, Cao YJ, Hendrix CW, Kaplin AI (2015) The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression. Transl Psychiatry 5:e563PubMedPubMedCentralCrossRef Rahn KA, Cao YJ, Hendrix CW, Kaplin AI (2015) The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression. Transl Psychiatry 5:e563PubMedPubMedCentralCrossRef
124.
go back to reference Sullivan GM, Oquendo MA, Milak JM, Miller JM, Burke A, Ogden RT, Parsey RV, Mann JJ (2015) Positron emission tomography quantification of serotonin1A receptor binding in suicide attempters with major depressive disorder. JAMA Psychiat 72:169–178CrossRef Sullivan GM, Oquendo MA, Milak JM, Miller JM, Burke A, Ogden RT, Parsey RV, Mann JJ (2015) Positron emission tomography quantification of serotonin1A receptor binding in suicide attempters with major depressive disorder. JAMA Psychiat 72:169–178CrossRef
125.
go back to reference Dankoski EC, Carroll S, Wightman RM (2016) Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem 136:1131–1141PubMedPubMedCentralCrossRef Dankoski EC, Carroll S, Wightman RM (2016) Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem 136:1131–1141PubMedPubMedCentralCrossRef
126.
go back to reference Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, Mao Q, Sun L, Gong X, Xia J, Lian B, Xie P (2016) Serotonin-1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry 16:319PubMedPubMedCentralCrossRef Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, Mao Q, Sun L, Gong X, Xia J, Lian B, Xie P (2016) Serotonin-1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry 16:319PubMedPubMedCentralCrossRef
127.
go back to reference Malone KM, Waternaux C, Haas GL, Cooper TB, Li S, Mann J (2003) Cigarette smoking, suicidal behavior, and serotonin function in major psychiatric disorders. Am J Psychiatry 160:773–779PubMedCrossRef Malone KM, Waternaux C, Haas GL, Cooper TB, Li S, Mann J (2003) Cigarette smoking, suicidal behavior, and serotonin function in major psychiatric disorders. Am J Psychiatry 160:773–779PubMedCrossRef
128.
go back to reference Linker KE, Elabd MG, Tawadrous P, Cano M, Green KN, Wood MA, Leslie FM (2020) Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun 11:306PubMedPubMedCentralCrossRef Linker KE, Elabd MG, Tawadrous P, Cano M, Green KN, Wood MA, Leslie FM (2020) Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun 11:306PubMedPubMedCentralCrossRef
129.
go back to reference Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A (2016) Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Imm 55:105–113CrossRef Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A (2016) Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Imm 55:105–113CrossRef
130.
go back to reference Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann J, Smiley J, Dwork AJ (2014) Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol 73:880–890PubMedCrossRef Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann J, Smiley J, Dwork AJ (2014) Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol 73:880–890PubMedCrossRef
131.
go back to reference Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, Tominaga I, Setoyama D, Kang D, Mimura M, Kanba S, Kato TH (2019) Suicide and microglia: recent findings and future perspectives based on human studies. Front Cell Neurosci 13:31PubMedPubMedCentralCrossRef Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, Tominaga I, Setoyama D, Kang D, Mimura M, Kanba S, Kato TH (2019) Suicide and microglia: recent findings and future perspectives based on human studies. Front Cell Neurosci 13:31PubMedPubMedCentralCrossRef
133.
go back to reference Jawaid A, Krajewska J, Pawliczak F, Kandra V, Schulz PE (2016) A macro role for microglia in poststroke depression. JAGS 64:459–461CrossRef Jawaid A, Krajewska J, Pawliczak F, Kandra V, Schulz PE (2016) A macro role for microglia in poststroke depression. JAGS 64:459–461CrossRef
135.
go back to reference Serafini G, Pompili M, Seretti ME, Stefani H, Palermo M, Coryell W, Girardi P (2013) The role of inflammatory cytokines in suicidal behavior: A systematic review. Eur Neuropsychopharmacol 23:1672–1686PubMedCrossRef Serafini G, Pompili M, Seretti ME, Stefani H, Palermo M, Coryell W, Girardi P (2013) The role of inflammatory cytokines in suicidal behavior: A systematic review. Eur Neuropsychopharmacol 23:1672–1686PubMedCrossRef
136.
go back to reference Mina VAL, Lacerda-Pinheiro SF, Maia LC, Pinheiro RFF Jr, Meireles CB, de Souza SIR, Reis AOA, Bianco B, Rolim MLN (2015) The influence of inflammatory cytokines in physiopathology of suicidal behavior. J Affect Disord 172:219–230PubMedCrossRef Mina VAL, Lacerda-Pinheiro SF, Maia LC, Pinheiro RFF Jr, Meireles CB, de Souza SIR, Reis AOA, Bianco B, Rolim MLN (2015) The influence of inflammatory cytokines in physiopathology of suicidal behavior. J Affect Disord 172:219–230PubMedCrossRef
137.
go back to reference Gananca L, Oquendo MA, Tyrka AR, Cisneros-Trujilo S, Mann JJ, Sublette ME (2016) The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology 63:296–310PubMedCrossRef Gananca L, Oquendo MA, Tyrka AR, Cisneros-Trujilo S, Mann JJ, Sublette ME (2016) The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology 63:296–310PubMedCrossRef
138.
go back to reference Torres-Platas SG, Cruceanu C, Chen GG, Turecki G (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59PubMedCrossRef Torres-Platas SG, Cruceanu C, Chen GG, Turecki G (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59PubMedCrossRef
139.
go back to reference Slusarczyk J, Trojan E, Glombik K, Budziszewska B, Kubera M, Lason W, Papiolek-Barczyl K, Mika J, Wedzong K, Basta-Kaim A (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglial cells. Front Cell Neurosci 9:82PubMedPubMedCentralCrossRef Slusarczyk J, Trojan E, Glombik K, Budziszewska B, Kubera M, Lason W, Papiolek-Barczyl K, Mika J, Wedzong K, Basta-Kaim A (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglial cells. Front Cell Neurosci 9:82PubMedPubMedCentralCrossRef
140.
go back to reference Stein DJ, Vasconcelos MF, Albrecht-Souza L, Ceresér KMM, de Almeida RMM (2017) Microglial over-activation contributes to anxiety- and depressive-like behaviors. Front Behav Neurosci 11:207PubMedPubMedCentralCrossRef Stein DJ, Vasconcelos MF, Albrecht-Souza L, Ceresér KMM, de Almeida RMM (2017) Microglial over-activation contributes to anxiety- and depressive-like behaviors. Front Behav Neurosci 11:207PubMedPubMedCentralCrossRef
141.
142.
go back to reference Matcovitch-Natan O, Winter DR, Giladi A, Aguilar SV, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, González FZ, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Halpern KB, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science. https://doi.org/10.1126/science.aad8670CrossRefPubMed Matcovitch-Natan O, Winter DR, Giladi A, Aguilar SV, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, González FZ, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Halpern KB, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science. https://​doi.​org/​10.​1126/​science.​aad8670CrossRefPubMed
143.
go back to reference O’Loughin E, Pakan JM, Yilmazer-Hanke D, McDermott KW (2017) Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J. Neuroinflamm. 14:212CrossRef O’Loughin E, Pakan JM, Yilmazer-Hanke D, McDermott KW (2017) Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J. Neuroinflamm. 14:212CrossRef
144.
go back to reference Polazzi E, Monti B (2010) Microglia and neuroprotection: From in vitro studies to therapeutic applications. Prog Neurobiol 92:293–315PubMedCrossRef Polazzi E, Monti B (2010) Microglia and neuroprotection: From in vitro studies to therapeutic applications. Prog Neurobiol 92:293–315PubMedCrossRef
146.
go back to reference Parlatto R, Kreiner G (2013) Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J Mol Med 91:541–547CrossRef Parlatto R, Kreiner G (2013) Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle? J Mol Med 91:541–547CrossRef
147.
go back to reference Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658PubMedCrossRef Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658PubMedCrossRef
148.
go back to reference Bray JC, Reyes KC, Roberts AJ, Ransohoff RM, Gruol DL (2013) Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacol 67:115–125CrossRef Bray JC, Reyes KC, Roberts AJ, Ransohoff RM, Gruol DL (2013) Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacol 67:115–125CrossRef
150.
go back to reference Prata J, Santos SG, Almeida MI, Coelho R, Barbosa MA (2017) Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers – pre-clinical and clinical investigations. J Neuroinflammation 14:179PubMedPubMedCentralCrossRef Prata J, Santos SG, Almeida MI, Coelho R, Barbosa MA (2017) Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers – pre-clinical and clinical investigations. J Neuroinflammation 14:179PubMedPubMedCentralCrossRef
152.
go back to reference Neumann H, Kotter MR, Franklin RJM (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295PubMedCrossRef Neumann H, Kotter MR, Franklin RJM (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295PubMedCrossRef
153.
go back to reference Biber K, Neumann H, Inoue K, Boddecke HW (2007) Neuronal on and off signals control microglia. Trends Neurosci 30:596–602PubMedCrossRef Biber K, Neumann H, Inoue K, Boddecke HW (2007) Neuronal on and off signals control microglia. Trends Neurosci 30:596–602PubMedCrossRef
154.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553PubMedCrossRef Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553PubMedCrossRef
156.
go back to reference Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH (2017) Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry 22:170–177PubMedCrossRef Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH (2017) Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry 22:170–177PubMedCrossRef
157.
go back to reference Takahashi Y, Yu Z, Sakai M, Tomita H (2016) Linking activation of microglia and peripheral monocytic cells to the pathophysiology of psychiatric disorders. Front Cell Neurosci 10:144PubMedPubMedCentralCrossRef Takahashi Y, Yu Z, Sakai M, Tomita H (2016) Linking activation of microglia and peripheral monocytic cells to the pathophysiology of psychiatric disorders. Front Cell Neurosci 10:144PubMedPubMedCentralCrossRef
158.
go back to reference Hui CW, St.-Pierre A, El Hajj H, Remy Y, Hebert S, (2018) Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front Mol Neurosci 11:13PubMedPubMedCentralCrossRef Hui CW, St.-Pierre A, El Hajj H, Remy Y, Hebert S, (2018) Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front Mol Neurosci 11:13PubMedPubMedCentralCrossRef
159.
go back to reference Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22:1442–1454PubMedCrossRef Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22:1442–1454PubMedCrossRef
160.
go back to reference Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR (2013) Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 13:1784–1797CrossRef Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR (2013) Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 13:1784–1797CrossRef
161.
go back to reference Wohleb ES, Delpech JC (2016) Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog-Neuropsychopharmacol Biol Psychiatry 79(1):40–48PubMed Wohleb ES, Delpech JC (2016) Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog-Neuropsychopharmacol Biol Psychiatry 79(1):40–48PubMed
162.
go back to reference Müller N, Myint A-M, Schwarz MJ (2009) The impact of neuroimmunedysregulation on neuroprotection and neurotoxicity in psychiatric disorders-reaction to drug treatment. Dial Clin Neurosci 11:319–332CrossRef Müller N, Myint A-M, Schwarz MJ (2009) The impact of neuroimmunedysregulation on neuroprotection and neurotoxicity in psychiatric disorders-reaction to drug treatment. Dial Clin Neurosci 11:319–332CrossRef
163.
go back to reference Müller N, Myint A-M, Schwarz MJ (2012) Inflammation in schizophrenia. Adv Protein Chem Struct Biol 88:49–68PubMedCrossRef Müller N, Myint A-M, Schwarz MJ (2012) Inflammation in schizophrenia. Adv Protein Chem Struct Biol 88:49–68PubMedCrossRef
164.
go back to reference Jo WK, Zhang Y, Emrich HM, Dietrich DE (2015) Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 9:268PubMedPubMedCentralCrossRef Jo WK, Zhang Y, Emrich HM, Dietrich DE (2015) Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 9:268PubMedPubMedCentralCrossRef
165.
go back to reference Bagasrawala I, Zecevic N, Radonjic NV (2016) N-methyl D-aspartate receptor antagonist kynurenic acid affects human cortical development. Front Neurosci 10:435PubMedPubMedCentralCrossRef Bagasrawala I, Zecevic N, Radonjic NV (2016) N-methyl D-aspartate receptor antagonist kynurenic acid affects human cortical development. Front Neurosci 10:435PubMedPubMedCentralCrossRef
166.
go back to reference Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Kiostinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22PubMedPubMedCentralCrossRef Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Kiostinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22PubMedPubMedCentralCrossRef
167.
go back to reference Larsson MK, Schwieler L, Goiny M, Erhardt S, Engberg G (2015) Chronic antipsychotic treatment in the rat-effects on brain interleukin-8 and kynurenic acid. Int J Tryptophan Res 8:49–52PubMedPubMedCentralCrossRef Larsson MK, Schwieler L, Goiny M, Erhardt S, Engberg G (2015) Chronic antipsychotic treatment in the rat-effects on brain interleukin-8 and kynurenic acid. Int J Tryptophan Res 8:49–52PubMedPubMedCentralCrossRef
168.
go back to reference Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112:297–306PubMedCrossRef Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112:297–306PubMedCrossRef
169.
go back to reference Notarangelo FM, Pocivavsek A (2017) Elevated kynurenine pathway metabolism during neurodevelopment: implications for brain and behavior. Neuropsychopharmacology 112:275–285 Notarangelo FM, Pocivavsek A (2017) Elevated kynurenine pathway metabolism during neurodevelopment: implications for brain and behavior. Neuropsychopharmacology 112:275–285
170.
go back to reference Pitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerro A (2017) Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43:764–767CrossRef Pitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerro A (2017) Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43:764–767CrossRef
171.
go back to reference Wurfel BE, Drevets BE, Bliss SA, McMillin JR, Suzuki H, Ford BN, Morris HM, Teague TK, Dantzer R, Savitz JB (2017) Serum kynurenic acid is reduced in affective psychosis. Transl. Psychiatry 7:e1115PubMedPubMedCentralCrossRef Wurfel BE, Drevets BE, Bliss SA, McMillin JR, Suzuki H, Ford BN, Morris HM, Teague TK, Dantzer R, Savitz JB (2017) Serum kynurenic acid is reduced in affective psychosis. Transl. Psychiatry 7:e1115PubMedPubMedCentralCrossRef
172.
go back to reference Brundin L, Erhardt S, Bryleva EY, Achtyes ED, Postolache TT (2011) The role of inflammation in suicidal behavior. Acta Psychiatr Scand 132:192–203CrossRef Brundin L, Erhardt S, Bryleva EY, Achtyes ED, Postolache TT (2011) The role of inflammation in suicidal behavior. Acta Psychiatr Scand 132:192–203CrossRef
173.
go back to reference Müller N, Myint AM, Krause D, Weidinger E, Schwarz MJ (2013) Anti-inflammatory treatment in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:146–153CrossRef Müller N, Myint AM, Krause D, Weidinger E, Schwarz MJ (2013) Anti-inflammatory treatment in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:146–153CrossRef
174.
go back to reference Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabendissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased quinolinic acid in subregions of the anterior cingulate gyrus. Evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflamm. 8:94CrossRef Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabendissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased quinolinic acid in subregions of the anterior cingulate gyrus. Evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflamm. 8:94CrossRef
175.
go back to reference Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Müller UJ, Bogerts B, Bernstein HG, Steiner J (2015) Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 265:321–329PubMedCrossRef Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Müller UJ, Bogerts B, Bernstein HG, Steiner J (2015) Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 265:321–329PubMedCrossRef
176.
go back to reference Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM (2012) Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry 13:482–492PubMedCrossRef Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM (2012) Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry 13:482–492PubMedCrossRef
177.
go back to reference Kubesova A, Tejkalova H, Syslova K, Kacer P, Vondrousova J, Tyls F, Fujakova M, Palenicek T, Horacek J (2015) Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology. PLoS ONE 10:e0115439PubMedPubMedCentralCrossRef Kubesova A, Tejkalova H, Syslova K, Kacer P, Vondrousova J, Tyls F, Fujakova M, Palenicek T, Horacek J (2015) Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology. PLoS ONE 10:e0115439PubMedPubMedCentralCrossRef
178.
go back to reference Kato TA, Monji A, Mizoguchi Y, Hashioka S, Horikawa H, Seki Y (2011) Anti-inflammatory properties of antipsychotics via microglia modulations. Are antipsychotics a fire extinguisher in the brain of schizophrenia? Mini Rev Med Chem 11:565–574PubMedCrossRef Kato TA, Monji A, Mizoguchi Y, Hashioka S, Horikawa H, Seki Y (2011) Anti-inflammatory properties of antipsychotics via microglia modulations. Are antipsychotics a fire extinguisher in the brain of schizophrenia? Mini Rev Med Chem 11:565–574PubMedCrossRef
179.
go back to reference Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry 70:663–671PubMedPubMedCentralCrossRef Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry 70:663–671PubMedPubMedCentralCrossRef
180.
go back to reference Mizoguchi Y, Kato T, Horikawa H, Monji A (2014) Microglial intracellular Ca2+ signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 8:370PubMedPubMedCentralCrossRef Mizoguchi Y, Kato T, Horikawa H, Monji A (2014) Microglial intracellular Ca2+ signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 8:370PubMedPubMedCentralCrossRef
181.
go back to reference Hashimoto K (2008) Microglial activation in schizophrenia and minocycline treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1758–1759CrossRef Hashimoto K (2008) Microglial activation in schizophrenia and minocycline treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1758–1759CrossRef
182.
go back to reference Hashioka S, McGeer PL, Miyaoka T, Wake R, Horiguchi J (2015) Can inhibition of microglial activation cure schizophrenia. Schizophr Res 168:583–584PubMedCrossRef Hashioka S, McGeer PL, Miyaoka T, Wake R, Horiguchi J (2015) Can inhibition of microglial activation cure schizophrenia. Schizophr Res 168:583–584PubMedCrossRef
183.
go back to reference Giovanoli S, Engler H, Engler A, Richetto J, Feldon J, Riva MA, Schedlowski M, Meyer U (2016) Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl. Psychiatry 6:e772PubMedPubMedCentralCrossRef Giovanoli S, Engler H, Engler A, Richetto J, Feldon J, Riva MA, Schedlowski M, Meyer U (2016) Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl. Psychiatry 6:e772PubMedPubMedCentralCrossRef
184.
go back to reference Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 35:4942–4952PubMedPubMedCentralCrossRef Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 35:4942–4952PubMedPubMedCentralCrossRef
185.
go back to reference Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimuru K, Sakamoto K, Herakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kordomatsu K (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Dise 4:e25 Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimuru K, Sakamoto K, Herakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kordomatsu K (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Dise 4:e25
186.
go back to reference Cotel MC, Lenartowicsz EM, Nateasan S, Modo MM, Cooper JD, Williams SCR, Kapur S, Vernon AC (2015) Microglial activation in the rat brain following chronic antipschotic treatment at clinically relevant doses. Eur Neuropsychopharmacol 25:2098–2107PubMedCrossRef Cotel MC, Lenartowicsz EM, Nateasan S, Modo MM, Cooper JD, Williams SCR, Kapur S, Vernon AC (2015) Microglial activation in the rat brain following chronic antipschotic treatment at clinically relevant doses. Eur Neuropsychopharmacol 25:2098–2107PubMedCrossRef
187.
go back to reference Ribeiro BMM, Santos do Carno MR, Souze Freire R, Flavio N, Rocha, M, Borella VCM, (2013) Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: Reversal by clozapine. Schizophr Res 151:12–19PubMedCrossRef Ribeiro BMM, Santos do Carno MR, Souze Freire R, Flavio N, Rocha, M, Borella VCM, (2013) Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: Reversal by clozapine. Schizophr Res 151:12–19PubMedCrossRef
188.
go back to reference Kenk M, Selvanathan T, Rao N, Suridan I, Rusjan P, Remington G, Meyer JH, Wilson AA, Houle S, Mizrahi R (2015) Imaging neuroinflammation in gray and white matter in schizophrenia: An in-vivo PET study with [18F]-FEPPA. Schizophr Bull 41:85–93PubMedCrossRef Kenk M, Selvanathan T, Rao N, Suridan I, Rusjan P, Remington G, Meyer JH, Wilson AA, Houle S, Mizrahi R (2015) Imaging neuroinflammation in gray and white matter in schizophrenia: An in-vivo PET study with [18F]-FEPPA. Schizophr Bull 41:85–93PubMedCrossRef
189.
go back to reference Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265PubMedCrossRef Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265PubMedCrossRef
190.
go back to reference Frick LR, Williams K, Pittenger C (2013) Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013:10CrossRef Frick LR, Williams K, Pittenger C (2013) Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013:10CrossRef
191.
go back to reference Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P (2017) Microglia activation and schizophrenia: Lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull 43:493–496PubMed Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P (2017) Microglia activation and schizophrenia: Lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull 43:493–496PubMed
192.
go back to reference Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:115–121CrossRef Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:115–121CrossRef
193.
go back to reference van Rees GF, Lago SG, Cox DA, Tomasi KJ, Rustogi N, Weigelt K, Ozcan S, Cooper J, Drexhage H, Leweke FM, Bahn S (2018) Evidence of microglial activation following exposure to serum from first-onset drug-naïve schizophrenic patients. Brain Behav Immun 67:364–373PubMedCrossRef van Rees GF, Lago SG, Cox DA, Tomasi KJ, Rustogi N, Weigelt K, Ozcan S, Cooper J, Drexhage H, Leweke FM, Bahn S (2018) Evidence of microglial activation following exposure to serum from first-onset drug-naïve schizophrenic patients. Brain Behav Immun 67:364–373PubMedCrossRef
194.
go back to reference Bhattacharya A (2018) Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front Phamacol 9:30 Bhattacharya A (2018) Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front Phamacol 9:30
196.
go back to reference Stertz L, Magalhaes PVS, Kapczinski F (2013) Is bipolar disorder an inflammatory condition: the relevance of microglial activation. Curr Opn Psychiatry 26:19–26CrossRef Stertz L, Magalhaes PVS, Kapczinski F (2013) Is bipolar disorder an inflammatory condition: the relevance of microglial activation. Curr Opn Psychiatry 26:19–26CrossRef
197.
go back to reference Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM (2012) Fluoxetine protects against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18S1:S213-S217 Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM (2012) Fluoxetine protects against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18S1:S213-S217
198.
go back to reference Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Beh Imm 26:469–479CrossRef Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Beh Imm 26:469–479CrossRef
199.
go back to reference Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S (2010) Inhibitory effects of SSRI on IFN-y induced microglial activation through the regulation of intracellular calcium. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1306–1316CrossRef Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S (2010) Inhibitory effects of SSRI on IFN-y induced microglial activation through the regulation of intracellular calcium. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1306–1316CrossRef
200.
go back to reference Dhami KS, Churchward MA, Baker GB, Todd KG (2019) Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. J Neurochem 148:761–778PubMedCrossRef Dhami KS, Churchward MA, Baker GB, Todd KG (2019) Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. J Neurochem 148:761–778PubMedCrossRef
201.
go back to reference Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression. An insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48:261–267CrossRef Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression. An insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48:261–267CrossRef
202.
go back to reference Dubovicky M, Csazar E, Melichercikova K, Kuniakova M, Rackova L (2014) Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip Toxicol 7:201–207PubMed Dubovicky M, Csazar E, Melichercikova K, Kuniakova M, Rackova L (2014) Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip Toxicol 7:201–207PubMed
203.
go back to reference Takeuchi H (2010) Neurotoxicity by microglia: Mechanisms and potential therapeutic strategy. Clin Exper Neuroimmunol 1:12–21CrossRef Takeuchi H (2010) Neurotoxicity by microglia: Mechanisms and potential therapeutic strategy. Clin Exper Neuroimmunol 1:12–21CrossRef
204.
go back to reference Palmieri EM, Menga A, Lebrun A, Hooper DC, Butterfield DA, Mazzone M, Castegna A (2017) Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid Redox Signal 26:351–363PubMedPubMedCentralCrossRef Palmieri EM, Menga A, Lebrun A, Hooper DC, Butterfield DA, Mazzone M, Castegna A (2017) Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid Redox Signal 26:351–363PubMedPubMedCentralCrossRef
206.
go back to reference Ohgidani M, Kato TA, Kanba S (2015) Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci 9:184PubMedPubMedCentralCrossRef Ohgidani M, Kato TA, Kanba S (2015) Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci 9:184PubMedPubMedCentralCrossRef
207.
go back to reference Prytkova I, Brennand KJ (2017) Prospects for modeling abnormal neuronal function in schizophrenia using human induced pluripotent stem cells. Front Cell Neurosci 11:360PubMedPubMedCentralCrossRef Prytkova I, Brennand KJ (2017) Prospects for modeling abnormal neuronal function in schizophrenia using human induced pluripotent stem cells. Front Cell Neurosci 11:360PubMedPubMedCentralCrossRef
208.
go back to reference Gomes FV, Llorente R, Delbel EA, Viveros MP, López-Gallardo M, Guimarães FS (2015) Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabiol. Schizophr Res 164:155–183PubMedCrossRef Gomes FV, Llorente R, Delbel EA, Viveros MP, López-Gallardo M, Guimarães FS (2015) Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabiol. Schizophr Res 164:155–183PubMedCrossRef
209.
go back to reference Lisboa SF, Gomes FV, Guimaraes FS, Campos AC (2016) Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol 7:5PubMedPubMedCentralCrossRef Lisboa SF, Gomes FV, Guimaraes FS, Campos AC (2016) Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol 7:5PubMedPubMedCentralCrossRef
210.
go back to reference de Almeida V, Martins-de-Souza D (2018) Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 268:727–737PubMedCrossRef de Almeida V, Martins-de-Souza D (2018) Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 268:727–737PubMedCrossRef
211.
go back to reference Cortez IL, Rodrigues da Silva NR, Guimaraes FS, Gomes FV (2020) Are CB2 receptors a new target for schizophrenia treatment. Front. Psychiatry 11:587154 Cortez IL, Rodrigues da Silva NR, Guimaraes FS, Gomes FV (2020) Are CB2 receptors a new target for schizophrenia treatment. Front. Psychiatry 11:587154
212.
go back to reference Jinno S, Kosaka T (2008) Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Expr Neurol 212:440–447CrossRef Jinno S, Kosaka T (2008) Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Expr Neurol 212:440–447CrossRef
213.
go back to reference Jansson L, Wennström M, Johanson A, Tingström A (2009) Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry 133:119–128 Jansson L, Wennström M, Johanson A, Tingström A (2009) Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry 133:119–128
214.
go back to reference Limoa E, Hashioka S, Miyaoka T, Tsuchie K, Arauchi R, Azis IA, Wake R, Hayashida M, Araki T, Furuya M, Liaury K, Tanra AJ (2016) Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflamm 13:320CrossRef Limoa E, Hashioka S, Miyaoka T, Tsuchie K, Arauchi R, Azis IA, Wake R, Hayashida M, Araki T, Furuya M, Liaury K, Tanra AJ (2016) Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflamm 13:320CrossRef
216.
go back to reference Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: From immunity to behaviour. Curr Opin Neurobiol 21:5–10PubMedCrossRef Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: From immunity to behaviour. Curr Opin Neurobiol 21:5–10PubMedCrossRef
217.
go back to reference Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M et al (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61:150–163PubMedCrossRef Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M et al (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61:150–163PubMedCrossRef
218.
go back to reference Verkhratsky A, Ho MS, Parpura V (2019) Evolution of neuroglia. In: Verkhratsky A, Ho MS, Zorec R, Parpura V (eds) Neuroglia in Neurodegenerative Diseases. Springer, USA, pp 15–44CrossRef Verkhratsky A, Ho MS, Parpura V (2019) Evolution of neuroglia. In: Verkhratsky A, Ho MS, Zorec R, Parpura V (eds) Neuroglia in Neurodegenerative Diseases. Springer, USA, pp 15–44CrossRef
219.
go back to reference Haug H (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores and one elephant). Am J Anat 180:126–142PubMedCrossRef Haug H (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores and one elephant). Am J Anat 180:126–142PubMedCrossRef
220.
go back to reference Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S et al (2004) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13:489–494PubMedCrossRef Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S et al (2004) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13:489–494PubMedCrossRef
221.
go back to reference Martín-Loeches M (2010) Uses and abuses of the enhanced-working-memory hypothesis in explaining modern thinking. Curr Anthropol 51:S67–S75CrossRef Martín-Loeches M (2010) Uses and abuses of the enhanced-working-memory hypothesis in explaining modern thinking. Curr Anthropol 51:S67–S75CrossRef
222.
go back to reference Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A (2005) A human-specific gene in microglia. Science 309:1693–1693PubMedCrossRef Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A (2005) A human-specific gene in microglia. Science 309:1693–1693PubMedCrossRef
224.
go back to reference Raison CL, Miller AH (2013) The evolutionary significance of depression in Pathogen Host Defence (PATHOS-D). Mol Psychiatry 18:15–37PubMedCrossRef Raison CL, Miller AH (2013) The evolutionary significance of depression in Pathogen Host Defence (PATHOS-D). Mol Psychiatry 18:15–37PubMedCrossRef
225.
go back to reference Panter-Brick C (2002) Sexual division of labor: energetic and evolutionary scenarios. Am J Hum Biol 14:627–640PubMedCrossRef Panter-Brick C (2002) Sexual division of labor: energetic and evolutionary scenarios. Am J Hum Biol 14:627–640PubMedCrossRef
226.
go back to reference Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5:47PubMedPubMedCentral Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5:47PubMedPubMedCentral
228.
go back to reference Ruxton GD, Wilkinson DM (2011) Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Nat Acad Sci 108:20965–20969PubMedPubMedCentralCrossRef Ruxton GD, Wilkinson DM (2011) Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Nat Acad Sci 108:20965–20969PubMedPubMedCentralCrossRef
229.
go back to reference Mattson MP, Wan R (2008) Neurotrophic factors in autonomic nervous system plasticity and dysfunction. NeuroMol Med 10:157–168CrossRef Mattson MP, Wan R (2008) Neurotrophic factors in autonomic nervous system plasticity and dysfunction. NeuroMol Med 10:157–168CrossRef
231.
go back to reference Raichlen DA, Polk JD (2013) Linking brains and brawn: Exercise and the evolution of human neurobiology. Proc R Soc B Biol Sci 280:1750 Raichlen DA, Polk JD (2013) Linking brains and brawn: Exercise and the evolution of human neurobiology. Proc R Soc B Biol Sci 280:1750
234.
go back to reference Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143PubMedCrossRef Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143PubMedCrossRef
235.
go back to reference Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exper Physiol 94:1062–1069CrossRef Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exper Physiol 94:1062–1069CrossRef
236.
go back to reference Saniotis A (2019) Evolutionary psychiatry enhancing our current knowledge of psychopathologies. Arch Psychiatry Psychotherapy 3:13–14CrossRef Saniotis A (2019) Evolutionary psychiatry enhancing our current knowledge of psychopathologies. Arch Psychiatry Psychotherapy 3:13–14CrossRef
Metadata
Title
The role of microglia in neuropsychiatric disorders and suicide
Authors
Ralf Brisch
Szymon Wojtylak
Arthur Saniotis
Johann Steiner
Tomasz Gos
Jaliya Kumaratilake
Maciej Henneberg
Rainer Wolf
Publication date
30-09-2021
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 6/2022
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-021-01334-z

Other articles of this Issue 6/2022

European Archives of Psychiatry and Clinical Neuroscience 6/2022 Go to the issue