Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat

Authors: Erlyn Limoa, Sadayuki Hashioka, Tsuyoshi Miyaoka, Keiko Tsuchie, Ryosuke Arauchi, Ilhamuddin A. Azis, Rei Wake, Maiko Hayashida, Tomoko Araki, Motohide Furuya, Kristian Liaury, Andi J. Tanra, Jun Horiguchi

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Although electroconvulsive therapy (ECT) is regarded as one of the efficient treatments for intractable psychiatric disorders, the mechanism of therapeutic action remains unclear. Recently, many studies indicate that ECT affects the immune-related cells, such as microglia, astrocytes, and lymphocytes. Moreover, microglial activation and astrocytic activation have been implicated in the postmortem brains of schizophrenia patients. We previously demonstrated that Gunn rats showed schizophrenia-like behavior and microglial activation in their brains. The present study examined the effects of electroconvulsive shock (ECS), an animal counterpart of ECT, on schizophrenia-like behavior, microgliosis, and astrogliosis in the brain of Gunn rats.

Methods

The rats were divided into four groups, i.e., Wistar sham, Wistar ECS, Gunn sham, and Gunn ECS. ECS groups received ECS once daily for six consecutive days. Subsequently, prepulse inhibition (PPI) test was performed, and immunohistochemistry analysis was carried out to determine the activation degree of microglia and astrocytes in the hippocampus by using anti-CD11b and anti-glial fibrillary acidic protein (GFAP) antibody, respectively.

Results

We found PPI deficit in Gunn rats compared to Wistar rats, and it was significantly improved by ECS. Immunohistochemistry analysis revealed that immunoreactivity of CD11b and GFAP was significantly increased in Gunn rats compared to Wistar rats. ECS significantly attenuated the immunoreactivity of both CD11b and GFAP in Gunn rats.

Conclusions

ECS ameliorated schizophrenia-like behavior of Gunn rats and attenuated microgliosis and astrogliosis in the hippocampus of Gunn rats. Accordingly, therapeutic effects of ECT may be exerted, at least in part, by inhibition of glial activation. These results may provide crucial information to elucidate the role of activated glia in the pathogenesis of schizophrenia and to determine whether future therapeutic interventions should attempt to up-regulate or down-regulate glial functions.
Literature
1.
go back to reference Group TUER. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361:799–808.CrossRef Group TUER. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361:799–808.CrossRef
2.
go back to reference Guloksuz S, Arts B, Walter S, Drukker M, Rodriguez L, Myint AM, Schwarz MJ, Ponds R, van Os J, Kenis G, Rutten BP. The impact of electroconvulsive therapy on the tryptophan-kynurenine metabolic pathway. Brain Behav Immun. 2015;48:48–52.CrossRefPubMed Guloksuz S, Arts B, Walter S, Drukker M, Rodriguez L, Myint AM, Schwarz MJ, Ponds R, van Os J, Kenis G, Rutten BP. The impact of electroconvulsive therapy on the tryptophan-kynurenine metabolic pathway. Brain Behav Immun. 2015;48:48–52.CrossRefPubMed
3.
go back to reference Pompili M, Lester D, Dominici G, Longo L, Marconi G, Forte A, Serafini G, Amore M, Girardi P. Indications for electroconvulsive treatment in schizophrenia: a systematic review. Schizophr Res. 2013;146:1–9.CrossRefPubMed Pompili M, Lester D, Dominici G, Longo L, Marconi G, Forte A, Serafini G, Amore M, Girardi P. Indications for electroconvulsive treatment in schizophrenia: a systematic review. Schizophr Res. 2013;146:1–9.CrossRefPubMed
4.
go back to reference Abrams R. Electroconvulsive therapy, 4th ed. New York: Oxford University Press; 2002. Abrams R. Electroconvulsive therapy, 4th ed. New York: Oxford University Press; 2002.
5.
go back to reference Anderson IM, Fergusson GM. Mechanism of action of ECT. 2013. p. 1–7. Anderson IM, Fergusson GM. Mechanism of action of ECT. 2013. p. 1–7.
6.
go back to reference Scott AIF. Mode of action of electroconvulsive therapy: an update. Adv Psychiatr Treat. 2011;17:15–22.CrossRef Scott AIF. Mode of action of electroconvulsive therapy: an update. Adv Psychiatr Treat. 2011;17:15–22.CrossRef
7.
go back to reference Fluitman SB, Heijnen CJ, Denys DA, Nolen WA, Balk FJ, Westenberg HG. Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord. 2011;131:388–92.CrossRefPubMed Fluitman SB, Heijnen CJ, Denys DA, Nolen WA, Balk FJ, Westenberg HG. Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord. 2011;131:388–92.CrossRefPubMed
8.
go back to reference Hestad KA, Tonseth S, Stoen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J ECT. 2003;19:183–8.CrossRefPubMed Hestad KA, Tonseth S, Stoen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J ECT. 2003;19:183–8.CrossRefPubMed
9.
go back to reference Hashioka S, Han YH, Fujii S, Kato T, Monji A, Utsumi H, Sawada M, Nakanishi H, Kanba S. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid beta and interferon-gamma-induced microglial activation. Free Radic Biol Med. 2007;42:945–54.CrossRefPubMed Hashioka S, Han YH, Fujii S, Kato T, Monji A, Utsumi H, Sawada M, Nakanishi H, Kanba S. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid beta and interferon-gamma-induced microglial activation. Free Radic Biol Med. 2007;42:945–54.CrossRefPubMed
10.
go back to reference Hashioka S, McLarnon JG, Ryu JK, Youssef AM, Abd-El-Aziz AS, Neeland EG, Klegeris A. Pyrazole compound 2-MBAPA as a novel inhibitor of microglial activation and neurotoxicity in vitro and in vivo. J Alzheimers Dis. 2011;27:531–41.PubMed Hashioka S, McLarnon JG, Ryu JK, Youssef AM, Abd-El-Aziz AS, Neeland EG, Klegeris A. Pyrazole compound 2-MBAPA as a novel inhibitor of microglial activation and neurotoxicity in vitro and in vivo. J Alzheimers Dis. 2011;27:531–41.PubMed
11.
go back to reference Hashioka S, McGeer PL, Miyaoka T, Wake R, Horiguchi J. Can inhibition of microglial activation cure schizophrenia? Schizophr Res. 2015;168(1-2):583–4.CrossRefPubMed Hashioka S, McGeer PL, Miyaoka T, Wake R, Horiguchi J. Can inhibition of microglial activation cure schizophrenia? Schizophr Res. 2015;168(1-2):583–4.CrossRefPubMed
12.
go back to reference Smith RS, Maes M. The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses. 1995;45:135–41.CrossRefPubMed Smith RS, Maes M. The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses. 1995;45:135–41.CrossRefPubMed
13.
go back to reference Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett. 1999;271:126–8.CrossRefPubMed Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett. 1999;271:126–8.CrossRefPubMed
14.
go back to reference Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Muller UJ, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26:1273–9.CrossRefPubMed Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Muller UJ, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26:1273–9.CrossRefPubMed
15.
go back to reference Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.CrossRefPubMed Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.CrossRefPubMed
16.
go back to reference Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.CrossRefPubMed Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.CrossRefPubMed
17.
go back to reference Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59:137–50.CrossRefPubMed Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59:137–50.CrossRefPubMed
18.
go back to reference Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol. 2005;43:81–9.PubMed Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol. 2005;43:81–9.PubMed
19.
go back to reference Rothermundt M, Ahn JN, Jorgens S. S100B in schizophrenia: an update. Gen Physiol Biophys. 2009; 28 Spec No Focus:F76-81. Rothermundt M, Ahn JN, Jorgens S. S100B in schizophrenia: an update. Gen Physiol Biophys. 2009; 28 Spec No Focus:F76-81.
20.
go back to reference Steiner J, Bernstein HG, Bielau H, Farkas N, Winter J, Dobrowolny H, Brisch R, Gos T, Mawrin C, Myint AM, Bogerts B. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J Psychiatr Res. 2008;42:868–76.CrossRefPubMed Steiner J, Bernstein HG, Bielau H, Farkas N, Winter J, Dobrowolny H, Brisch R, Gos T, Mawrin C, Myint AM, Bogerts B. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J Psychiatr Res. 2008;42:868–76.CrossRefPubMed
21.
go back to reference Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, Horiguchi J. Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). J Clin Psychiatry. 2000;61:868–71.CrossRefPubMed Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, Horiguchi J. Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). J Clin Psychiatry. 2000;61:868–71.CrossRefPubMed
22.
go back to reference Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, Srinivasan K. Association between unconjugated bilirubin and schizophrenia. Psychiatry Res. 2011;189:480–2.CrossRefPubMed Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, Srinivasan K. Association between unconjugated bilirubin and schizophrenia. Psychiatry Res. 2011;189:480–2.CrossRefPubMed
24.
go back to reference Izquierdo I, Zand R. Behavioural observations in Gunn rats. Psychopharmacology (Berl). 1978;57:155–61.CrossRef Izquierdo I, Zand R. Behavioural observations in Gunn rats. Psychopharmacology (Berl). 1978;57:155–61.CrossRef
25.
go back to reference Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, Inagaki T, Toga T, Nagami H, Oda T, Horiguchi J. Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:581–8.CrossRefPubMed Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, Inagaki T, Toga T, Nagami H, Oda T, Horiguchi J. Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:581–8.CrossRefPubMed
26.
go back to reference Tsuchie K, Miyaoka T, Furuya M, Liaury K, Ieda M, Wake R, Horiguchi J, Takechi M. The effects of antipsychotics on behavioral abnormalities of the Gunn rat (unconjugated hyperbilirubinemia rat), a rat model of schizophrenia. Asian J Psychiatr. 2013;6:119–23.CrossRefPubMed Tsuchie K, Miyaoka T, Furuya M, Liaury K, Ieda M, Wake R, Horiguchi J, Takechi M. The effects of antipsychotics on behavioral abnormalities of the Gunn rat (unconjugated hyperbilirubinemia rat), a rat model of schizophrenia. Asian J Psychiatr. 2013;6:119–23.CrossRefPubMed
27.
go back to reference Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, Ieda M, Tsuchie K, Taki M, Ishihara K, Tanra AJ, Horiguchi J. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation. 2012;9:56.CrossRefPubMedCentral Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, Ieda M, Tsuchie K, Taki M, Ishihara K, Tanra AJ, Horiguchi J. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation. 2012;9:56.CrossRefPubMedCentral
28.
go back to reference Liaury K, Miyaoka T, Tsumori T, Furuya M, Hashioka S, Wake R, Tsuchie K, Fukushima M, Limoa E, Tanra AJ, Horiguchi J. Minocycline improves recognition memory and attenuates microglial activation in Gunn rat: a possible hyperbilirubinemia-induced animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:184–90.CrossRefPubMed Liaury K, Miyaoka T, Tsumori T, Furuya M, Hashioka S, Wake R, Tsuchie K, Fukushima M, Limoa E, Tanra AJ, Horiguchi J. Minocycline improves recognition memory and attenuates microglial activation in Gunn rat: a possible hyperbilirubinemia-induced animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:184–90.CrossRefPubMed
29.
go back to reference Lamont SR, Paulls A, Stewart CA. Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res. 2001;893:53–8.CrossRefPubMed Lamont SR, Paulls A, Stewart CA. Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res. 2001;893:53–8.CrossRefPubMed
30.
go back to reference Shapiro SM, Hecox KE. Development of brainstem auditory evoked potentials in heterozygous and homozygous jaundiced Gunn rats. Brain Res. 1988;469:147–57.CrossRefPubMed Shapiro SM, Hecox KE. Development of brainstem auditory evoked potentials in heterozygous and homozygous jaundiced Gunn rats. Brain Res. 1988;469:147–57.CrossRefPubMed
31.
go back to reference Shapiro SM, Hecox KE. Brain stem auditory evoked potentials in jaundiced Gunn rats. Ann Otol Rhinol Laryngol. 1989;98:308–17.CrossRefPubMed Shapiro SM, Hecox KE. Brain stem auditory evoked potentials in jaundiced Gunn rats. Ann Otol Rhinol Laryngol. 1989;98:308–17.CrossRefPubMed
32.
go back to reference Levi G, Sohmer H, Kapitulnik J. Auditory nerve and brain stem responses in homozygous jaundiced Gunn rats. Arch Otorhinolaryngol. 1981;232:139–43.CrossRefPubMed Levi G, Sohmer H, Kapitulnik J. Auditory nerve and brain stem responses in homozygous jaundiced Gunn rats. Arch Otorhinolaryngol. 1981;232:139–43.CrossRefPubMed
33.
go back to reference Cereser KM, Frey BN, Bernardes FB, Costa SC, Andreazza AC, Feier G, Souza D, Tramontina F, Goncalves CA, Kapczinski F, Quevedo J. Glial fibrillary acidic protein expression after electroconvulsive shocks in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:663–7.CrossRefPubMed Cereser KM, Frey BN, Bernardes FB, Costa SC, Andreazza AC, Feier G, Souza D, Tramontina F, Goncalves CA, Kapczinski F, Quevedo J. Glial fibrillary acidic protein expression after electroconvulsive shocks in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:663–7.CrossRefPubMed
34.
go back to reference Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS. Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma. 2010;27:1283–95.CrossRefPubMedPubMedCentral Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS. Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma. 2010;27:1283–95.CrossRefPubMedPubMedCentral
35.
go back to reference Dwork AJ, Christensen JR, Larsen KB, Scalia J, Underwood MD, Arango V, Pakkenberg B, Lisanby SH. Unaltered neuronal and glial counts in animal models of magnetic seizure therapy and electroconvulsive therapy. Neuroscience. 2009;164:1557–64.CrossRefPubMedPubMedCentral Dwork AJ, Christensen JR, Larsen KB, Scalia J, Underwood MD, Arango V, Pakkenberg B, Lisanby SH. Unaltered neuronal and glial counts in animal models of magnetic seizure therapy and electroconvulsive therapy. Neuroscience. 2009;164:1557–64.CrossRefPubMedPubMedCentral
36.
go back to reference Jansson L, Wennstrom M, Johanson A, Tingstrom A. Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1119–28.CrossRefPubMed Jansson L, Wennstrom M, Johanson A, Tingstrom A. Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1119–28.CrossRefPubMed
37.
go back to reference Jinno S, Kosaka T. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol. 2008;212:440–7.CrossRefPubMed Jinno S, Kosaka T. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol. 2008;212:440–7.CrossRefPubMed
38.
go back to reference Kragh J, Bolwig TG, Woldbye DP, Jorgensen OS. Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. Biol Psychiatry. 1993;33:794–800.CrossRefPubMed Kragh J, Bolwig TG, Woldbye DP, Jorgensen OS. Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. Biol Psychiatry. 1993;33:794–800.CrossRefPubMed
39.
go back to reference Okada-Tsuchioka M, Segawa M, Kajitani N, Hisaoka-Nakashima K, Shibasaki C, Morinobu S, Takebayashi M. Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:236–44.CrossRefPubMed Okada-Tsuchioka M, Segawa M, Kajitani N, Hisaoka-Nakashima K, Shibasaki C, Morinobu S, Takebayashi M. Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:236–44.CrossRefPubMed
40.
go back to reference Wennström M, Hellsten J, Ekdahl CT, Tingström A. Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus. Biol Psychiatry. 2003;54:1015–24.CrossRefPubMed Wennström M, Hellsten J, Ekdahl CT, Tingström A. Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus. Biol Psychiatry. 2003;54:1015–24.CrossRefPubMed
41.
go back to reference Kaae SS, Chen F, Wegener G, Madsen TM, Nyengaard JR. Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse. 2012;66:667–76.CrossRefPubMed Kaae SS, Chen F, Wegener G, Madsen TM, Nyengaard JR. Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse. 2012;66:667–76.CrossRefPubMed
42.
go back to reference Wennstrom M, Hellsten J, Ekstrand J, Lindgren H, Tingstrom A. Corticosterone-induced inhibition of gliogenesis in rat hippocampus is counteracted by electroconvulsive seizures. Biol Psychiatry. 2006;59:178–86.CrossRefPubMed Wennstrom M, Hellsten J, Ekstrand J, Lindgren H, Tingstrom A. Corticosterone-induced inhibition of gliogenesis in rat hippocampus is counteracted by electroconvulsive seizures. Biol Psychiatry. 2006;59:178–86.CrossRefPubMed
43.
go back to reference Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 1978;15:339–43.CrossRef Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 1978;15:339–43.CrossRef
44.
go back to reference Braff DL, Grillon C, Geyer MA. Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry. 1992;49:206–15.CrossRefPubMed Braff DL, Grillon C, Geyer MA. Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry. 1992;49:206–15.CrossRefPubMed
45.
go back to reference Braff DL, Swerdlow NR, Geyer MA. Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry. 1999;156:596–602.PubMed Braff DL, Swerdlow NR, Geyer MA. Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry. 1999;156:596–602.PubMed
46.
go back to reference Dawson ME, Schell AM, Hazlett EA, Nuechterlein KH, Filion DL. On the clinical and cognitive meaning of impaired sensorimotor gating in schizophrenia. Psychiatry Res. 2000;96:187–97.CrossRefPubMed Dawson ME, Schell AM, Hazlett EA, Nuechterlein KH, Filion DL. On the clinical and cognitive meaning of impaired sensorimotor gating in schizophrenia. Psychiatry Res. 2000;96:187–97.CrossRefPubMed
47.
go back to reference Parwani A, Duncan EJ, Bartlett E, Madonick SH, Efferen TR, Rajan R, Sanfilipo M, Chappell PB, Chakravorty S, Gonzenbach S, et al. Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry. 2000;47:662–9.CrossRefPubMed Parwani A, Duncan EJ, Bartlett E, Madonick SH, Efferen TR, Rajan R, Sanfilipo M, Chappell PB, Chakravorty S, Gonzenbach S, et al. Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry. 2000;47:662–9.CrossRefPubMed
48.
go back to reference Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL. Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry. 2006;63:1325–35.CrossRefPubMed Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL. Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry. 2006;63:1325–35.CrossRefPubMed
49.
go back to reference Kumari V, Soni W, Mathew VM, Sharma T. Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry. 2000;57:609–14.CrossRefPubMed Kumari V, Soni W, Mathew VM, Sharma T. Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry. 2000;57:609–14.CrossRefPubMed
50.
go back to reference Kumari V, Soni W, Sharma T. Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry. 1999;156:1046–51.PubMed Kumari V, Soni W, Sharma T. Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry. 1999;156:1046–51.PubMed
51.
go back to reference Sadock B, Sadock V, Ruiz P. Kaplan and Sadock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry. 2014. Sadock B, Sadock V, Ruiz P. Kaplan and Sadock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry. 2014.
52.
go back to reference Kristensen D, Bauer J, Hageman I, Jorgensen MB. Electroconvulsive therapy for treating schizophrenia: a chart review of patients from two catchment areas. Eur Arch Psychiatry Clin Neurosci. 2011;261:425–32.CrossRefPubMed Kristensen D, Bauer J, Hageman I, Jorgensen MB. Electroconvulsive therapy for treating schizophrenia: a chart review of patients from two catchment areas. Eur Arch Psychiatry Clin Neurosci. 2011;261:425–32.CrossRefPubMed
53.
go back to reference Iancu I, Pick N, Seener-Lorsh O, Dannon P. Patients with schizophrenia or schizoaffective disorder who receive multiple electroconvulsive therapy sessions: characteristics, indications, and results. Neuropsychiatr Dis Treat. 2015;11:853–62.PubMedCentral Iancu I, Pick N, Seener-Lorsh O, Dannon P. Patients with schizophrenia or schizoaffective disorder who receive multiple electroconvulsive therapy sessions: characteristics, indications, and results. Neuropsychiatr Dis Treat. 2015;11:853–62.PubMedCentral
54.
go back to reference Chao YL, Chen HH, Chen CH. Effects of repeated electroconvulsive shock on methamphetamine-induced behavioral abnormalities in mice. Brain Stimul. 2012;5:393–401.CrossRef Chao YL, Chen HH, Chen CH. Effects of repeated electroconvulsive shock on methamphetamine-induced behavioral abnormalities in mice. Brain Stimul. 2012;5:393–401.CrossRef
55.
go back to reference Hazlett EA, Romero MJ, Haznedar MM, New AS, Goldstein KE, Newmark RE, Siever LJ, Buchsbaum MS. Deficient attentional modulation of startle eyeblink is associated with symptom severity in the schizophrenia spectrum. Schizophr Res. 2007;93:288–95.CrossRefPubMed Hazlett EA, Romero MJ, Haznedar MM, New AS, Goldstein KE, Newmark RE, Siever LJ, Buchsbaum MS. Deficient attentional modulation of startle eyeblink is associated with symptom severity in the schizophrenia spectrum. Schizophr Res. 2007;93:288–95.CrossRefPubMed
56.
go back to reference Schulz-Juergensen S, Thiemann A, Gebhardt J, Baumgarten-Walczak A, Eggert P. Prepulse inhibition of acoustic startle and the influence of methylphenidate in children with ADHD. J Atten Disord. 2014;18:117–22.CrossRefPubMed Schulz-Juergensen S, Thiemann A, Gebhardt J, Baumgarten-Walczak A, Eggert P. Prepulse inhibition of acoustic startle and the influence of methylphenidate in children with ADHD. J Atten Disord. 2014;18:117–22.CrossRefPubMed
57.
go back to reference Egeland J. Differentiating attention deficit in adult ADHD and schizophrenia. Arch Clin Neuropsychol. 2007;22:763–71.CrossRefPubMed Egeland J. Differentiating attention deficit in adult ADHD and schizophrenia. Arch Clin Neuropsychol. 2007;22:763–71.CrossRefPubMed
58.
go back to reference Darbra S, Modol L, Pallares M. Allopregnanolone infused into the dorsal (CA1) hippocampus increases prepulse inhibition of startle response in Wistar rats. Psychoneuroendocrinology. 2012;37:581–5.CrossRefPubMed Darbra S, Modol L, Pallares M. Allopregnanolone infused into the dorsal (CA1) hippocampus increases prepulse inhibition of startle response in Wistar rats. Psychoneuroendocrinology. 2012;37:581–5.CrossRefPubMed
59.
go back to reference Ma J, Leung LS. Schizophrenia-like behavioral changes after partial hippocampal kindling. Brain Res. 2004;997:111–8.CrossRefPubMed Ma J, Leung LS. Schizophrenia-like behavioral changes after partial hippocampal kindling. Brain Res. 2004;997:111–8.CrossRefPubMed
60.
go back to reference Swerdlow NR, Hanlon FM, Henning L, Kim YK, Gaudet I, Halim ND. Regulation of sensorimotor gating in rats by hippocampal NMDA: anatomical localization. Brain Res. 2001;898:195–203.CrossRefPubMed Swerdlow NR, Hanlon FM, Henning L, Kim YK, Gaudet I, Halim ND. Regulation of sensorimotor gating in rats by hippocampal NMDA: anatomical localization. Brain Res. 2001;898:195–203.CrossRefPubMed
61.
go back to reference Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl). 2004;174:151–62.CrossRef Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl). 2004;174:151–62.CrossRef
62.
go back to reference Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry. 2010;167:1178–93.CrossRefPubMed Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry. 2010;167:1178–93.CrossRefPubMed
63.
go back to reference Tamminga CA, Thomas BP, Chin R, Mihalakos P, Youens K, Wagner AD, Preston AR. Hippocampal novelty activations in schizophrenia: disease and medication effects. Schizophr Res. 2012;138:157–63.CrossRefPubMed Tamminga CA, Thomas BP, Chin R, Mihalakos P, Youens K, Wagner AD, Preston AR. Hippocampal novelty activations in schizophrenia: disease and medication effects. Schizophr Res. 2012;138:157–63.CrossRefPubMed
64.
go back to reference Green HF, Nolan YM. Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev. 2014;40:20–34.CrossRefPubMed Green HF, Nolan YM. Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev. 2014;40:20–34.CrossRefPubMed
66.
go back to reference Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation. 2013;10:145.CrossRefPubMedPubMedCentral Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation. 2013;10:145.CrossRefPubMedPubMedCentral
67.
go back to reference Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64:328–63.CrossRefPubMed Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64:328–63.CrossRefPubMed
68.
go back to reference Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, Wennberg R, Ghersi-Egea JF, Tiribelli C. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One. 2011;6:e16165.CrossRefPubMedPubMedCentral Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, Wennberg R, Ghersi-Egea JF, Tiribelli C. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One. 2011;6:e16165.CrossRefPubMedPubMedCentral
69.
go back to reference Ostrow JD, Pascolo L, Shapiro SM, Tiribelli C. New concepts in bilirubin encephalopathy. Eur J Clin Invest. 2003;33:988–97.CrossRefPubMed Ostrow JD, Pascolo L, Shapiro SM, Tiribelli C. New concepts in bilirubin encephalopathy. Eur J Clin Invest. 2003;33:988–97.CrossRefPubMed
70.
go back to reference Gordo AC, Falcao AS, Fernandes A, Brito MA, Silva RF, Brites D. Unconjugated bilirubin activates and damages microglia. J Neurosci Res. 2006;84:194–201.CrossRefPubMed Gordo AC, Falcao AS, Fernandes A, Brito MA, Silva RF, Brites D. Unconjugated bilirubin activates and damages microglia. J Neurosci Res. 2006;84:194–201.CrossRefPubMed
71.
go back to reference Silva SL, Vaz AR, Barateiro A, Falcao AS, Fernandes A, Brito MA, Silva RF, Brites D. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis. 2010;40:663–75.CrossRefPubMed Silva SL, Vaz AR, Barateiro A, Falcao AS, Fernandes A, Brito MA, Silva RF, Brites D. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis. 2010;40:663–75.CrossRefPubMed
72.
go back to reference Fernandes A, Barateiro A, Falcao AS, Silva SL, Vaz AR, Brito MA, Silva RF, Brites D. Astrocyte reactivity to unconjugated bilirubin requires TNF-alpha and IL-1beta receptor signaling pathways. Glia. 2011;59:14–25.CrossRefPubMed Fernandes A, Barateiro A, Falcao AS, Silva SL, Vaz AR, Brito MA, Silva RF, Brites D. Astrocyte reactivity to unconjugated bilirubin requires TNF-alpha and IL-1beta receptor signaling pathways. Glia. 2011;59:14–25.CrossRefPubMed
73.
74.
go back to reference Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94:1077–98.CrossRefPubMed Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94:1077–98.CrossRefPubMed
75.
go back to reference Zarubenko II, Yakovlev AA, Stepanichev MY, Gulyaeva NV. Electroconvulsive shock induces neuron death in the mouse hippocampus: correlation of neurodegeneration with convulsive activity. Neurosci Behav Physiol. 2005;35:715–21.CrossRefPubMed Zarubenko II, Yakovlev AA, Stepanichev MY, Gulyaeva NV. Electroconvulsive shock induces neuron death in the mouse hippocampus: correlation of neurodegeneration with convulsive activity. Neurosci Behav Physiol. 2005;35:715–21.CrossRefPubMed
76.
go back to reference Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47:1043–9.CrossRefPubMed Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47:1043–9.CrossRefPubMed
77.
go back to reference Ito M, Seki T, Liu J, Nakamura K, Namba T, Matsubara Y, Suzuki T, Arai H. Effects of repeated electroconvulsive seizure on cell proliferation in the rat hippocampus. Synapse. 2010;64:814–21.CrossRefPubMed Ito M, Seki T, Liu J, Nakamura K, Namba T, Matsubara Y, Suzuki T, Arai H. Effects of repeated electroconvulsive seizure on cell proliferation in the rat hippocampus. Synapse. 2010;64:814–21.CrossRefPubMed
78.
go back to reference Nakamura K, Ito M, Liu Y, Seki T, Suzuki T, Arai H. Effects of single and repeated electroconvulsive stimulation on hippocampal cell proliferation and spontaneous behaviors in the rat. Brain Res. 2013;1491:88–97.CrossRefPubMed Nakamura K, Ito M, Liu Y, Seki T, Suzuki T, Arai H. Effects of single and repeated electroconvulsive stimulation on hippocampal cell proliferation and spontaneous behaviors in the rat. Brain Res. 2013;1491:88–97.CrossRefPubMed
79.
go back to reference Conti G, Gale K, Kondratyev A. Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci Res. 2009;65:201–9.CrossRefPubMedPubMedCentral Conti G, Gale K, Kondratyev A. Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci Res. 2009;65:201–9.CrossRefPubMedPubMedCentral
80.
go back to reference Girgenti MJ, Collier E, Sathyanesan M, Su XW, Newton SS. Characterization of electroconvulsive seizure-induced TIMP-1 and MMP-9 in hippocampal vasculature. Int J Neuropsychopharmacol. 2011;14:535–44.CrossRefPubMed Girgenti MJ, Collier E, Sathyanesan M, Su XW, Newton SS. Characterization of electroconvulsive seizure-induced TIMP-1 and MMP-9 in hippocampal vasculature. Int J Neuropsychopharmacol. 2011;14:535–44.CrossRefPubMed
81.
go back to reference Newton SS, Girgenti MJ, Collier EF, Duman RS. Electroconvulsive seizure increases adult hippocampal angiogenesis in rats. Eur J Neurosci. 2006;24:819–28.CrossRefPubMed Newton SS, Girgenti MJ, Collier EF, Duman RS. Electroconvulsive seizure increases adult hippocampal angiogenesis in rats. Eur J Neurosci. 2006;24:819–28.CrossRefPubMed
82.
go back to reference Ploski JE, Newton SS, Duman RS. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J Neurochem. 2006;99:1122–32.CrossRefPubMed Ploski JE, Newton SS, Duman RS. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J Neurochem. 2006;99:1122–32.CrossRefPubMed
83.
go back to reference Stewart CA, Davies SN. Repeated electroconvulsive stimulation impairs synaptic plasticity in the dentate gyrus in vivo but has no effect in CA1 in vitro. Neurosci Lett. 1996;213:177–80.CrossRefPubMed Stewart CA, Davies SN. Repeated electroconvulsive stimulation impairs synaptic plasticity in the dentate gyrus in vivo but has no effect in CA1 in vitro. Neurosci Lett. 1996;213:177–80.CrossRefPubMed
84.
go back to reference Rothermundt M, Arolt V, Weitzsch C, Eckhoff D, Kirchner H. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology. 1998;37:186–93.CrossRefPubMed Rothermundt M, Arolt V, Weitzsch C, Eckhoff D, Kirchner H. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology. 1998;37:186–93.CrossRefPubMed
85.
go back to reference Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJ, Drexhage HA. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol. 2011;14:746–55.CrossRefPubMed Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJ, Drexhage HA. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol. 2011;14:746–55.CrossRefPubMed
86.
go back to reference Zorrilla EP, Cannon TD, Gur RE, Kessler J. Leukocytes and organ-nonspecific autoantibodies in schizophrenics and their siblings: markers of vulnerability or disease? Biol Psychiatry. 1996;40:825–33.CrossRefPubMed Zorrilla EP, Cannon TD, Gur RE, Kessler J. Leukocytes and organ-nonspecific autoantibodies in schizophrenics and their siblings: markers of vulnerability or disease? Biol Psychiatry. 1996;40:825–33.CrossRefPubMed
87.
go back to reference Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC. Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry. 1999;156:1725–9.PubMed Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC. Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry. 1999;156:1725–9.PubMed
Metadata
Title
Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat
Authors
Erlyn Limoa
Sadayuki Hashioka
Tsuyoshi Miyaoka
Keiko Tsuchie
Ryosuke Arauchi
Ilhamuddin A. Azis
Rei Wake
Maiko Hayashida
Tomoko Araki
Motohide Furuya
Kristian Liaury
Andi J. Tanra
Jun Horiguchi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0688-2

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue