Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 3/2017

01-03-2017 | Otology

The impact of erdosteine on cisplatin-induced ototoxicity: a proteomics approach

Authors: Sofia Waissbluth, Delphine Garnier, Olubunmi V. Akinpelu, Pezhman Salehi, Sam J. Daniel

Published in: European Archives of Oto-Rhino-Laryngology | Issue 3/2017

Login to get access

Abstract

Cisplatin is a commonly used chemotherapeutic agent and causes serious side effects, including progressive and irreversible hearing loss. No treatment is currently available for cisplatin-induced ototoxicity. We have previously demonstrated that erdosteine, a potent antioxidant, partially protected the cochlea against cisplatin toxicity in vivo. The aims of this study were to (1) evaluate the protein profiles of the cochlea following cisplatin administration and (2) evaluate the impact of erdosteine on the protein profile using a proteomics-based approach. Thirty Sprague–Dawley rats were injected intraperitoneally with saline (n = 10), cisplatin (n = 10) or with cisplatin and erdosteine (n = 10). The cisplatin dosage was 14 mg/kg and for erdosteine, 500 mg/kg. Following euthanasia, protein lysates were obtained from fresh-frozen cochleae and were processed for mass spectrometry and western blotting. We detected 445 proteins that exhibited a twofold change or greater in the cisplatin group as compared to the control group. Of these, 18 proteins showed a fourfold or greater change in expression associated with cisplatin administration, including ras-related protein Rab-2A, Rab-6A, cd81, ribosomal protein S5, and myelin basic protein, which were downregulated, while Ba1-647 and fibrinogen (alpha chain), amongst others, were upregulated. Co-administration of erdosteine revealed a reversal of these changes in the expression of ras-related protein Rab-2A, ribosomal protein S5, myelin basic protein, and fibrinogen (alpha chain); erdosteine also upregulated glutathione reductase. In this study, we identified various proteins that may play a role in cisplatin-induced ototoxicity. We also observed the changes resulting from co-treatment with an antioxidant.
Literature
1.
2.
go back to reference Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369CrossRefPubMed Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369CrossRefPubMed
3.
go back to reference Langer T, am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O (2013) Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 34:458–469CrossRefPubMed Langer T, am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O (2013) Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 34:458–469CrossRefPubMed
4.
go back to reference Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 9:2467–2498CrossRef Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 9:2467–2498CrossRef
5.
go back to reference Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279CrossRefPubMed Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279CrossRefPubMed
6.
go back to reference Rybak LP, Whitworth CA, Mukherjea D et al (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167CrossRefPubMed Rybak LP, Whitworth CA, Mukherjea D et al (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167CrossRefPubMed
7.
go back to reference So H, Kim H, Lee JH et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8:338–355CrossRefPubMedPubMedCentral So H, Kim H, Lee JH et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8:338–355CrossRefPubMedPubMedCentral
9.
go back to reference Krause KH (2014) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57:S28–S29 Krause KH (2014) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57:S28–S29
10.
go back to reference Banfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072CrossRefPubMed Banfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072CrossRefPubMed
11.
go back to reference Garcia-Berrocal JR, Nevado J, Ramirez-Camacho R et al (2007) The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br J Pharmacol 152:1012–1020CrossRefPubMedPubMedCentral Garcia-Berrocal JR, Nevado J, Ramirez-Camacho R et al (2007) The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br J Pharmacol 152:1012–1020CrossRefPubMedPubMedCentral
12.
go back to reference van den Berg JH, Beijnen JH, Balm AJ, Schellens JH (2006) Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat Rev 32:390–397CrossRefPubMed van den Berg JH, Beijnen JH, Balm AJ, Schellens JH (2006) Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat Rev 32:390–397CrossRefPubMed
13.
go back to reference Waissbluth S, Dupuis I, Daniel SJ (2012) Protective effect of erdosteine against cisplatin-induced ototoxicity in a guinea pig model. Otolaryngol Head Neck Surg 4:627–632CrossRef Waissbluth S, Dupuis I, Daniel SJ (2012) Protective effect of erdosteine against cisplatin-induced ototoxicity in a guinea pig model. Otolaryngol Head Neck Surg 4:627–632CrossRef
14.
go back to reference van Ruijven MW, de Groot JC, Smoorenburg GF (2004) Time sequence of degeneration pattern in the guinea pig cochlea during cisplatin administration. A quantitative histological study. Hear Res 197:44–54CrossRefPubMed van Ruijven MW, de Groot JC, Smoorenburg GF (2004) Time sequence of degeneration pattern in the guinea pig cochlea during cisplatin administration. A quantitative histological study. Hear Res 197:44–54CrossRefPubMed
16.
go back to reference Saliba I, El Fata F (2012) Is intratympanic injection of erdosteine protective against cisplatin-induced ototoxicity? Neurotox Res 21:302–308CrossRefPubMed Saliba I, El Fata F (2012) Is intratympanic injection of erdosteine protective against cisplatin-induced ototoxicity? Neurotox Res 21:302–308CrossRefPubMed
17.
go back to reference Fumagalli G, Balzaritti C, Banfi P et al (1998) Erdosteina: a new molecule with mucolytic activity. Clinical and instrumental evaluation in patients with acute and exacerbated chronic bronchopneumopathies. G Ital Mal Torace 42:299–308 Fumagalli G, Balzaritti C, Banfi P et al (1998) Erdosteina: a new molecule with mucolytic activity. Clinical and instrumental evaluation in patients with acute and exacerbated chronic bronchopneumopathies. G Ital Mal Torace 42:299–308
18.
go back to reference Moretti M, Marchioni CF (2007) An overview of erdosteine antioxidant activity in experimental research. Pharmacol Res 55:249–254CrossRefPubMed Moretti M, Marchioni CF (2007) An overview of erdosteine antioxidant activity in experimental research. Pharmacol Res 55:249–254CrossRefPubMed
19.
go back to reference Hatzopoulos S, Di Stefano M, Albertin A, Martini A (1999) Evaluation of cisplatin ototoxicity in a rat animal model. Ann N Y Acad Sci 884:211–225CrossRefPubMed Hatzopoulos S, Di Stefano M, Albertin A, Martini A (1999) Evaluation of cisplatin ototoxicity in a rat animal model. Ann N Y Acad Sci 884:211–225CrossRefPubMed
20.
go back to reference Shevchenko A, Jensen ON, Podtelejnikov AV et al (1996) Linking genome and proteome by mass spectrometry: large-scale identication of yeast proteins from two dimensional gels. Proc Natl Acad Sci 93:14440–14445CrossRefPubMedPubMedCentral Shevchenko A, Jensen ON, Podtelejnikov AV et al (1996) Linking genome and proteome by mass spectrometry: large-scale identication of yeast proteins from two dimensional gels. Proc Natl Acad Sci 93:14440–14445CrossRefPubMedPubMedCentral
21.
go back to reference Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMed Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMed
22.
24.
go back to reference Alawieh A, Mondello S, Kobeissy F, Shibbani K, Bassim M (2015) Proteomics studies in inner ear disorders: pathophysiology and biomarkers. Expert Rev Proteomics 12:185–196CrossRefPubMed Alawieh A, Mondello S, Kobeissy F, Shibbani K, Bassim M (2015) Proteomics studies in inner ear disorders: pathophysiology and biomarkers. Expert Rev Proteomics 12:185–196CrossRefPubMed
25.
go back to reference Jung HH, Kim HJ, Im GJ, Chang J, Choi J, Chae SW (2009) Differential protein expression profiles in salicylate ototoxicity of the mouse cochlea. Hear Res 255:121–128CrossRefPubMed Jung HH, Kim HJ, Im GJ, Chang J, Choi J, Chae SW (2009) Differential protein expression profiles in salicylate ototoxicity of the mouse cochlea. Hear Res 255:121–128CrossRefPubMed
26.
go back to reference Jamesdaniel S, Hu B, Kermany MH et al (2011) Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 75:410–424CrossRefPubMedPubMedCentral Jamesdaniel S, Hu B, Kermany MH et al (2011) Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 75:410–424CrossRefPubMedPubMedCentral
27.
go back to reference Coling DE, Ding D, Young R et al (2007) Proteomic analysis of cisplatin-induced cochlear damage: methods and early changes in protein expression. Hear Res 226:140–156CrossRefPubMed Coling DE, Ding D, Young R et al (2007) Proteomic analysis of cisplatin-induced cochlear damage: methods and early changes in protein expression. Hear Res 226:140–156CrossRefPubMed
28.
go back to reference Jamesdaniel S, Ding D, Kermany MH et al (2008) Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res 7:3516–3524CrossRefPubMedPubMedCentral Jamesdaniel S, Ding D, Kermany MH et al (2008) Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res 7:3516–3524CrossRefPubMedPubMedCentral
29.
go back to reference Jamesdaniel S, Coling D, Hinduja S et al (2012) Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem 287:18674–18686CrossRefPubMedPubMedCentral Jamesdaniel S, Coling D, Hinduja S et al (2012) Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem 287:18674–18686CrossRefPubMedPubMedCentral
30.
31.
go back to reference Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMed Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMed
33.
go back to reference Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329CrossRefPubMed Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329CrossRefPubMed
34.
go back to reference Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119:749–761CrossRefPubMed Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119:749–761CrossRefPubMed
35.
go back to reference Tisdale EJ, Balch WE (1996) Rab2 is essential for the maturation of pre-Golgi intermediates. J Biol Chem 271:29372–29379CrossRefPubMed Tisdale EJ, Balch WE (1996) Rab2 is essential for the maturation of pre-Golgi intermediates. J Biol Chem 271:29372–29379CrossRefPubMed
36.
go back to reference Sugawara T, Kano F, Murata M (2014) Rab2A is a pivotal switch protein that promotes either secretion or ER-associated degradation of (pro)insulin in insulin-secreting cells. Sci Rep 4:6952CrossRefPubMed Sugawara T, Kano F, Murata M (2014) Rab2A is a pivotal switch protein that promotes either secretion or ER-associated degradation of (pro)insulin in insulin-secreting cells. Sci Rep 4:6952CrossRefPubMed
37.
go back to reference Micaroni M, Stanley AC, Khromykh T et al (2013) Rab6a/a’ are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One 8:e57034CrossRefPubMedPubMedCentral Micaroni M, Stanley AC, Khromykh T et al (2013) Rab6a/a’ are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One 8:e57034CrossRefPubMedPubMedCentral
38.
go back to reference Del Nery E, Miserey-Lenkei S, Falguières T et al (2006) Rab6A and Rab6A’ GTPases play non-overlapping roles in membrane trafficking. Traffic 7:394–407CrossRefPubMed Del Nery E, Miserey-Lenkei S, Falguières T et al (2006) Rab6A and Rab6A’ GTPases play non-overlapping roles in membrane trafficking. Traffic 7:394–407CrossRefPubMed
39.
go back to reference Deber CM, Reynolds SJ (1991) Central nervous system myelin: structure, function, and pathology. Clin Biochem 24:113–134CrossRefPubMed Deber CM, Reynolds SJ (1991) Central nervous system myelin: structure, function, and pathology. Clin Biochem 24:113–134CrossRefPubMed
40.
go back to reference Schwartz AM, Parakkal M, Gulley RL (1983) Postnatal development of spiral ganglion cells in the rat. Am J Anat 167:33–41CrossRefPubMed Schwartz AM, Parakkal M, Gulley RL (1983) Postnatal development of spiral ganglion cells in the rat. Am J Anat 167:33–41CrossRefPubMed
41.
go back to reference Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development in the rat. Hear Res 18:111–120CrossRefPubMed Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development in the rat. Hear Res 18:111–120CrossRefPubMed
42.
go back to reference Romand MR, Romand R (1990) Development of spiral ganglion cells in mammalian cochlea. J Electron Microsc Tech 15:144–154CrossRefPubMed Romand MR, Romand R (1990) Development of spiral ganglion cells in mammalian cochlea. J Electron Microsc Tech 15:144–154CrossRefPubMed
43.
go back to reference Jagger DJ, Housley GD (2003) Membrane properties of type II spiral ganglion neurons identified in a neonatal rat cochlear slice. J Physiol 552(Pt 2):525–533CrossRefPubMedPubMedCentral Jagger DJ, Housley GD (2003) Membrane properties of type II spiral ganglion neurons identified in a neonatal rat cochlear slice. J Physiol 552(Pt 2):525–533CrossRefPubMedPubMedCentral
44.
go back to reference van Ruijven MW, de Groot JC, Klis SF, Smoorenburg GF (2005) The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study. Hear Res 205:241–248CrossRefPubMed van Ruijven MW, de Groot JC, Klis SF, Smoorenburg GF (2005) The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study. Hear Res 205:241–248CrossRefPubMed
46.
go back to reference Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42:149–155CrossRefPubMed Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42:149–155CrossRefPubMed
47.
go back to reference O’Connor LT, Goetz BD, Kwiecien JM, Delaney KH, Fletch AL, Duncan ID (1999) Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J Neurosci 19:3404–3413PubMed O’Connor LT, Goetz BD, Kwiecien JM, Delaney KH, Fletch AL, Duncan ID (1999) Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J Neurosci 19:3404–3413PubMed
48.
49.
go back to reference Barondes SH, Cooper DN, Gitt MA, Galectins Leffler H (1994) Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810PubMed Barondes SH, Cooper DN, Gitt MA, Galectins Leffler H (1994) Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810PubMed
50.
go back to reference Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157RCrossRefPubMed Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157RCrossRefPubMed
51.
go back to reference Ilarregui JM, Croci DO, Bianco GA et al (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991CrossRefPubMed Ilarregui JM, Croci DO, Bianco GA et al (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991CrossRefPubMed
52.
go back to reference Starossom SC, Mascanfroni ID, Imitola J et al (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263CrossRefPubMedPubMedCentral Starossom SC, Mascanfroni ID, Imitola J et al (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263CrossRefPubMedPubMedCentral
53.
go back to reference Parikh NU, Aalinkeel R, Reynolds JL et al (2015) Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: neuroprotective role in maintaining blood brain barrier integrity. Brain Res 1624:175–187CrossRefPubMedPubMedCentral Parikh NU, Aalinkeel R, Reynolds JL et al (2015) Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: neuroprotective role in maintaining blood brain barrier integrity. Brain Res 1624:175–187CrossRefPubMedPubMedCentral
54.
go back to reference Wang J, Xia J, Zhang F et al (2015) Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 5:9621CrossRefPubMedPubMedCentral Wang J, Xia J, Zhang F et al (2015) Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 5:9621CrossRefPubMedPubMedCentral
55.
go back to reference Yu X, Scott SA, Pritchard R, Houston TA, Ralph SJ, Blanchard H (2015) Redox state influence on human galectin-1 function. Biochimie 116:8–16CrossRefPubMed Yu X, Scott SA, Pritchard R, Houston TA, Ralph SJ, Blanchard H (2015) Redox state influence on human galectin-1 function. Biochimie 116:8–16CrossRefPubMed
56.
go back to reference Zhang P, Zhang P, Shi B et al (2014) Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer. Cell Death Dis 5:e991CrossRefPubMedPubMedCentral Zhang P, Zhang P, Shi B et al (2014) Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer. Cell Death Dis 5:e991CrossRefPubMedPubMedCentral
57.
go back to reference Su YC, Davuluri GV, Chen CH et al (2016) Galectin-1-induced autophagy facilitates cisplatin resistance of hepatocellular carcinoma. PLoS One 11:e0148408CrossRefPubMedPubMedCentral Su YC, Davuluri GV, Chen CH et al (2016) Galectin-1-induced autophagy facilitates cisplatin resistance of hepatocellular carcinoma. PLoS One 11:e0148408CrossRefPubMedPubMedCentral
58.
go back to reference Rybak LP, Husain K, Evenson L, Morris C, Whitworth C, Somani SM (1997) Protection by 4-methylthiobenzoic acid against cisplatin-induced ototoxicity: antioxidant system. Pharmacol Toxicol 81:173–179CrossRefPubMed Rybak LP, Husain K, Evenson L, Morris C, Whitworth C, Somani SM (1997) Protection by 4-methylthiobenzoic acid against cisplatin-induced ototoxicity: antioxidant system. Pharmacol Toxicol 81:173–179CrossRefPubMed
60.
go back to reference Brozovic A, Ambriović-Ristov A, Osmak M (2010) The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 40:347–359CrossRefPubMed Brozovic A, Ambriović-Ristov A, Osmak M (2010) The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 40:347–359CrossRefPubMed
61.
go back to reference Kalcioglu MT, Kizilay A, Gulec M et al (2005) The protective effect of erdosteine against ototoxicity induced by cisplatin in rats. Eur Arch Otorhinolaryngol 262:856–863CrossRefPubMed Kalcioglu MT, Kizilay A, Gulec M et al (2005) The protective effect of erdosteine against ototoxicity induced by cisplatin in rats. Eur Arch Otorhinolaryngol 262:856–863CrossRefPubMed
62.
go back to reference Kim SJ, Park C, Lee JN et al (2015) Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins. Toxicol Appl Pharmacol 288:192–202CrossRefPubMed Kim SJ, Park C, Lee JN et al (2015) Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins. Toxicol Appl Pharmacol 288:192–202CrossRefPubMed
Metadata
Title
The impact of erdosteine on cisplatin-induced ototoxicity: a proteomics approach
Authors
Sofia Waissbluth
Delphine Garnier
Olubunmi V. Akinpelu
Pezhman Salehi
Sam J. Daniel
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 3/2017
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-016-4399-1

Other articles of this Issue 3/2017

European Archives of Oto-Rhino-Laryngology 3/2017 Go to the issue