Skip to main content
Top
Published in: Archives of Dermatological Research 2/2007

01-05-2007 | Review Article

CD83: an update on functions and prospects of the maturation marker of dendritic cells

Authors: Alexander T. Prechtel, Alexander Steinkasserer

Published in: Archives of Dermatological Research | Issue 2/2007

Login to get access

Abstract

CD83 is one of the most characteristic cell surface markers for fully matured dendritic cells (DCs). In their function as antigen presenting cells they induce T-cell mediated immune responses. In this review we provide an overview on well described and proposed functions of this molecule as well as on very recent insights and new hypothesis. Already the CD83 messenger RNA processing differs remarkably from the processing of other cellular mRNAs: instead of the usual TAP mRNA export pathway, the CD83 mRNA is exported by the specific CRM1-mediated pathway, utilized only by a minority of cellular mRNAs. On the protein level, two different isoforms of CD83 exist: a membrane-bound and a soluble form. The isoforms are generated by different subsets of cells, including DCs, T-cells and B-cells, and also differ in their biological function. While the membrane-bound CD83 is of immune stimulatory capacity, activates T-cells and is important for the generation of thymocytes, the soluble CD83 has the opposite effect and has an immune inhibitory capacity. Due to its immune inhibitory function, CD83 has great potential for treatment of autoimmune diseases, for organ transplantations, and for immunotherapy, just to name a few examples. Moreover, some viruses prevent recognition by the host’s immune system by specifically targeting CD83 surface expression.
Literature
1.
go back to reference Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171(9):4479–4483PubMed Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171(9):4479–4483PubMed
2.
go back to reference Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166(3):1452–1456PubMed Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166(3):1452–1456PubMed
3.
go back to reference Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739PubMed Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739PubMed
4.
go back to reference Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61(2):273–278PubMed Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61(2):273–278PubMed
5.
go back to reference Ardavin C (1997) Thymic dendritic cells. Immunol Today 18(7):350–361PubMed Ardavin C (1997) Thymic dendritic cells. Immunol Today 18(7):350–361PubMed
6.
go back to reference Arrode G, Boccaccio C, Abastado JP, Davrinche C (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76(1):142–150PubMed Arrode G, Boccaccio C, Abastado JP, Davrinche C (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76(1):142–150PubMed
7.
go back to reference Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31(1):421–423PubMed Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31(1):421–423PubMed
8.
go back to reference Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed
9.
go back to reference Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells—a review. Virus Genes 26(2):119–130PubMed Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells—a review. Virus Genes 26(2):119–130PubMed
10.
go back to reference Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4(3):127–135PubMed Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4(3):127–135PubMed
11.
go back to reference Berchtold S, Jones T, Muhl-Zurbes P, Sheer D, Schuler G, Steinkasserer A (1999) The human dendritic cell marker CD83 maps to chromosome 6p23. Ann Hum Genet 63(Pt 2):181–183PubMed Berchtold S, Jones T, Muhl-Zurbes P, Sheer D, Schuler G, Steinkasserer A (1999) The human dendritic cell marker CD83 maps to chromosome 6p23. Ann Hum Genet 63(Pt 2):181–183PubMed
12.
go back to reference Berchtold S, Muhl-Zurbes P, Heufler C, Winklehner P, Schuler G, Steinkasserer A (1999) Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett 461(3):211–216PubMed Berchtold S, Muhl-Zurbes P, Heufler C, Winklehner P, Schuler G, Steinkasserer A (1999) Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett 461(3):211–216PubMed
13.
go back to reference Berchtold S, Muhl-Zurbes P, Maczek E, Golka A, Schuler G, Steinkasserer A (2002) Cloning and characterization of the promoter region of the human CD83 gene. Immunobiology 205(3):231–246PubMed Berchtold S, Muhl-Zurbes P, Maczek E, Golka A, Schuler G, Steinkasserer A (2002) Cloning and characterization of the promoter region of the human CD83 gene. Immunobiology 205(3):231–246PubMed
14.
go back to reference Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6(3):124–133PubMed Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6(3):124–133PubMed
15.
go back to reference Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58(2):266–277PubMed Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58(2):266–277PubMed
16.
go back to reference Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285(5428):732–736PubMed Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285(5428):732–736PubMed
17.
go back to reference Burns S, Thrasher AJ (2004) Dendritic cells: the bare bones of immunity. Curr Biol 14(22):R965–R967PubMed Burns S, Thrasher AJ (2004) Dendritic cells: the bare bones of immunity. Curr Biol 14(22):R965–R967PubMed
18.
go back to reference Cao W, Lee SH, Lu J (2005) CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385(Pt 1):85–93PubMed Cao W, Lee SH, Lu J (2005) CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385(Pt 1):85–93PubMed
19.
go back to reference Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829PubMed Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829PubMed
20.
go back to reference Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470PubMed Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470PubMed
21.
go back to reference Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327PubMed Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327PubMed
22.
go back to reference Dilioglou S, Cruse JM, Lewis RE (2003) Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 75(3):217–227PubMed Dilioglou S, Cruse JM, Lewis RE (2003) Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 75(3):217–227PubMed
23.
go back to reference Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G (2005) Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol 174(11):6672–6676PubMed Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G (2005) Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol 174(11):6672–6676PubMed
24.
go back to reference Dudziak D, Kieser A, Dirmeier U, Nimmerjahn F, Berchtold S, Steinkasserer A, Marschall G, Hammerschmidt W, Laux G, Bornkamm GW (2003) Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-{kappa}B signaling pathway. J Virol 77(15):8290–8298PubMed Dudziak D, Kieser A, Dirmeier U, Nimmerjahn F, Berchtold S, Steinkasserer A, Marschall G, Hammerschmidt W, Laux G, Bornkamm GW (2003) Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-{kappa}B signaling pathway. J Virol 77(15):8290–8298PubMed
25.
go back to reference Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1):23–29PubMed Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1):23–29PubMed
26.
go back to reference Elfgang C, Rosorius O, Hofer L, Jaksche H, Hauber J, Bevec D (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234PubMed Elfgang C, Rosorius O, Hofer L, Jaksche H, Hauber J, Bevec D (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234PubMed
27.
go back to reference Elliott DJ, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear export. Curr Opin Genet Dev 4(2):305–309PubMed Elliott DJ, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear export. Curr Opin Genet Dev 4(2):305–309PubMed
28.
go back to reference Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766PubMed Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766PubMed
29.
go back to reference Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95(26):15293–15298PubMed Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95(26):15293–15298PubMed
30.
go back to reference Flores-Romo L (2001) In vivo maturation and migration of dendritic cells. Immunology 102(3):255–262PubMed Flores-Romo L (2001) In vivo maturation and migration of dendritic cells. Immunology 102(3):255–262PubMed
31.
go back to reference Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem (in press) Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem (in press)
32.
go back to reference Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91PubMed Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91PubMed
33.
go back to reference Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767PubMed Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767PubMed
34.
go back to reference Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, Andrews DM, Chen Y, McEuen M, Tang P, Rhinehart RL, Proll S, Paeper B, Brunkow ME, Grandea AG III, Howard ED, Walker DE, Charmley P, Jonas M, Shaw S, Latham JA, Ramsdell F (2004) A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol 173(5):2995–3001PubMed Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, Andrews DM, Chen Y, McEuen M, Tang P, Rhinehart RL, Proll S, Paeper B, Brunkow ME, Grandea AG III, Howard ED, Walker DE, Charmley P, Jonas M, Shaw S, Latham JA, Ramsdell F (2004) A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol 173(5):2995–3001PubMed
35.
go back to reference Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971PubMed Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971PubMed
36.
go back to reference Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23PubMed Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23PubMed
37.
go back to reference Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15(5):271–276PubMed Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15(5):271–276PubMed
38.
go back to reference Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMed Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMed
39.
go back to reference Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL (2006) Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 67(1):57–60PubMed Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL (2006) Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 67(1):57–60PubMed
40.
go back to reference Hock BD, Haring LF, Steinkasserer A, Taylor KG, Patton WN, McKenzie JL (2004) The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk Res 28(3):237–241PubMed Hock BD, Haring LF, Steinkasserer A, Taylor KG, Patton WN, McKenzie JL (2004) The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk Res 28(3):237–241PubMed
41.
go back to reference Hock BD, Kato M, McKenzie JL, Hart DNJ (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967PubMed Hock BD, Kato M, McKenzie JL, Hart DNJ (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967PubMed
42.
go back to reference Iking-Konert C, Wagner C, Denefleh B, Hug F, Schneider M, Andrassy K, Hansch GM (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130(3):501–508PubMed Iking-Konert C, Wagner C, Denefleh B, Hug F, Schneider M, Andrassy K, Hansch GM (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130(3):501–508PubMed
43.
go back to reference Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341(6244):746–749PubMed Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341(6244):746–749PubMed
44.
go back to reference Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96(1):5–7PubMed Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96(1):5–7PubMed
45.
go back to reference King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14(4):1943–1952PubMed King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14(4):1943–1952PubMed
46.
go back to reference Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80(4):823–833PubMed Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80(4):823–833PubMed
47.
go back to reference Kotzor N, Lechmann M, Zinser E, Steinkasserer A (2004) The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology 209(1–2):129–140PubMed Kotzor N, Lechmann M, Zinser E, Steinkasserer A (2004) The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology 209(1–2):129–140PubMed
48.
go back to reference Kozlow EJ, Wilson GL, Fox CH, Kehrl JH (1993) Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81(2):454–461PubMed Kozlow EJ, Wilson GL, Fox CH, Kehrl JH (1993) Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81(2):454–461PubMed
49.
go back to reference Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hauber J (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191(9):1581–1590PubMed Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hauber J (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191(9):1581–1590PubMed
50.
go back to reference Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74(15):7127–7136PubMed Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74(15):7127–7136PubMed
51.
go back to reference Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2(6):487–492PubMed Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2(6):487–492PubMed
52.
go back to reference Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266PubMed Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266PubMed
53.
go back to reference Lechmann M, Kotzor N, Zinser E, Prechtel AT, Sticht H, Steinkasserer A (2005) CD83 is a dimer: comparative analysis of monomeric and dimeric isoforms. Biochem Biophys Res Commun 329(1):132–139PubMed Lechmann M, Kotzor N, Zinser E, Prechtel AT, Sticht H, Steinkasserer A (2005) CD83 is a dimer: comparative analysis of monomeric and dimeric isoforms. Biochem Biophys Res Commun 329(1):132–139PubMed
54.
go back to reference Lechmann M, Kremmer E, Sticht H, Steinkasserer A (2002) Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Exp Purif 24(3):445–452 Lechmann M, Kremmer E, Sticht H, Steinkasserer A (2002) Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Exp Purif 24(3):445–452
55.
go back to reference Lechmann M, Krooshoop DJEB, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821PubMed Lechmann M, Krooshoop DJEB, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821PubMed
56.
go back to reference Lekkerkerker AN, van Kooyk Y, Geijtenbeek TB (2006) Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4(2):169–176PubMed Lekkerkerker AN, van Kooyk Y, Geijtenbeek TB (2006) Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4(2):169–176PubMed
57.
go back to reference Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA (1998) Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28(12):4114–4122PubMed Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA (1998) Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28(12):4114–4122PubMed
58.
go back to reference Matzinger P, Guerder S (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338(6210):74–76PubMed Matzinger P, Guerder S (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338(6210):74–76PubMed
59.
go back to reference McKinsey TA, Chu ZL, Tedder TF, Ballard DW (2000) Transcription factor NF-[kappa]B regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37(12–13):783–788PubMed McKinsey TA, Chu ZL, Tedder TF, Ballard DW (2000) Transcription factor NF-[kappa]B regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37(12–13):783–788PubMed
60.
go back to reference Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMed Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMed
61.
go back to reference Mitchell P, Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320–325PubMed Mitchell P, Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320–325PubMed
62.
go back to reference Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116PubMed Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116PubMed
63.
go back to reference Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187(7):1019–1028PubMed Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187(7):1019–1028PubMed
64.
go back to reference Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD (2004) Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173(7):4553–4560PubMed Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD (2004) Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173(7):4553–4560PubMed
65.
go back to reference Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2(4):227–238PubMed Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2(4):227–238PubMed
66.
go back to reference Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123PubMed Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123PubMed
67.
go back to reference Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104PubMed Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104PubMed
68.
go back to reference Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925PubMed Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925PubMed
69.
go back to reference Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A (2005) Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86(Pt 6):1645–1657PubMed Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A (2005) Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86(Pt 6):1645–1657PubMed
70.
go back to reference Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A (2006) Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods 311(1–2):139–152PubMed Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A (2006) Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods 311(1–2):139–152PubMed
71.
go back to reference Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G (2001) Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15(6):997–1009PubMed Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G (2001) Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15(6):997–1009PubMed
72.
go back to reference Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13(5):267–274PubMed Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13(5):267–274PubMed
73.
go back to reference Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26(3):273–287PubMed Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26(3):273–287PubMed
74.
go back to reference Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3):269–273PubMed Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3):269–273PubMed
75.
go back to reference Reed R, Magni K (2001) A new view of mRNA export: separating the wheat from the chaff. Nat Cell Biol 3(9):E201–E204PubMed Reed R, Magni K (2001) A new view of mRNA export: separating the wheat from the chaff. Nat Cell Biol 3(9):E201–E204PubMed
76.
go back to reference Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478PubMed Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478PubMed
77.
go back to reference Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12(7):337–345PubMed Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12(7):337–345PubMed
78.
go back to reference Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96(8):639–655PubMed Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96(8):639–655PubMed
79.
go back to reference Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380PubMed Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380PubMed
80.
go back to reference Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253PubMed Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253PubMed
81.
go back to reference Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769PubMed Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769PubMed
82.
go back to reference Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):S127–S132PubMed Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):S127–S132PubMed
83.
go back to reference Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, Ledbetter JA (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol 166(6):3865–3872PubMed Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, Ledbetter JA (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol 166(6):3865–3872PubMed
84.
go back to reference Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168(6):2599–2602PubMed Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168(6):2599–2602PubMed
85.
go back to reference Senechal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215PubMed Senechal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215PubMed
86.
go back to reference Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46(3):200–221PubMed Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46(3):200–221PubMed
87.
go back to reference Sorg UR, Morse TM, Patton WN, Hock BD, Angus HB, Robinson BA, Colls BM, Hart DN (1997) Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29(3):294–299PubMed Sorg UR, Morse TM, Patton WN, Hock BD, Angus HB, Robinson BA, Colls BM, Hart DN (1997) Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29(3):294–299PubMed
88.
go back to reference Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086PubMed Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086PubMed
89.
go back to reference Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20(3):151–160PubMed Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20(3):151–160PubMed
90.
go back to reference Steinman RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100(5):491–494PubMed Steinman RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100(5):491–494PubMed
91.
go back to reference Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMed Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMed
92.
go back to reference Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789PubMed Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789PubMed
93.
go back to reference Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223(1):1–15PubMed Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223(1):1–15PubMed
94.
go back to reference Toka FN, Suvas S, Rouse BT (2004) CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against Herpes simplex virus type 1. J Virol 78(23):13082–13089PubMed Toka FN, Suvas S, Rouse BT (2004) CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against Herpes simplex virus type 1. J Virol 78(23):13082–13089PubMed
95.
go back to reference Twist CJ, Beier DR, Disteche CM, Edelhoff S, Tedder TF (1998) The mouse Cd83 gene: structure, domain organization, and chromosome localization. Immunogenetics 48(6):383–393PubMed Twist CJ, Beier DR, Disteche CM, Edelhoff S, Tedder TF (1998) The mouse Cd83 gene: structure, domain organization, and chromosome localization. Immunogenetics 48(6):383–393PubMed
96.
go back to reference Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F (2002) The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 216:233–289PubMedCrossRef Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F (2002) The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 216:233–289PubMedCrossRef
97.
go back to reference Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16(3):285–292PubMed Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16(3):285–292PubMed
98.
go back to reference Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92(3):826–830PubMed Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92(3):826–830PubMed
99.
go back to reference Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505PubMed Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505PubMed
100.
go back to reference Wilson GM, Brewer G (1999) Identification and characterization of proteins binding A + U-rich elements. Methods 17(1):74–83PubMed Wilson GM, Brewer G (1999) Identification and characterization of proteins binding A + U-rich elements. Methods 17(1):74–83PubMed
101.
go back to reference Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2(4):237–246PubMed Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2(4):237–246PubMed
102.
go back to reference Wolenski M, Cramer SO, Ehrlich S, Steeg C, Fleischer B, von Bonin A (2003) Enhanced activation of CD83-positive T cells. Scand J Immunol 58(3):306–311PubMed Wolenski M, Cramer SO, Ehrlich S, Steeg C, Fleischer B, von Bonin A (2003) Enhanced activation of CD83-positive T cells. Scand J Immunol 58(3):306–311PubMed
103.
go back to reference Yang S, Yang Y, Raycraft J, Zhang H, Kanan S, Guo Y, Ronai Z, Hellstrom I, Hellstrom KE (2004) Melanoma cells transfected to express CD83 induce antitumor immunity that can be increased by also engaging CD137. Proc Natl Acad Sci 101(14):4990–4995PubMed Yang S, Yang Y, Raycraft J, Zhang H, Kanan S, Guo Y, Ronai Z, Hellstrom I, Hellstrom KE (2004) Melanoma cells transfected to express CD83 induce antitumor immunity that can be increased by also engaging CD137. Proc Natl Acad Sci 101(14):4990–4995PubMed
104.
go back to reference Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149(2):735–742PubMed Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149(2):735–742PubMed
105.
go back to reference Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93(6):2588–2592PubMed Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93(6):2588–2592PubMed
106.
go back to reference Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835PubMed Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835PubMed
107.
go back to reference Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86(9):3295–3301PubMed Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86(9):3295–3301PubMed
108.
go back to reference Zinser E, Lechmann M, Golka A, Hock B, Steinkasserer A (2006) Determination of the inhibitory activity and biological half-live of soluble CD83: comparison of wild type and mutant isoforms. Immunobiology 211(6–8):449–453PubMed Zinser E, Lechmann M, Golka A, Hock B, Steinkasserer A (2006) Determination of the inhibitory activity and biological half-live of soluble CD83: comparison of wild type and mutant isoforms. Immunobiology 211(6–8):449–453PubMed
109.
go back to reference Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351PubMed Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351PubMed
110.
go back to reference Zinser E, Turza N, Steinkasserer A (2004) CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology 209(1–2):89–97PubMed Zinser E, Turza N, Steinkasserer A (2004) CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology 209(1–2):89–97PubMed
Metadata
Title
CD83: an update on functions and prospects of the maturation marker of dendritic cells
Authors
Alexander T. Prechtel
Alexander Steinkasserer
Publication date
01-05-2007
Publisher
Springer-Verlag
Published in
Archives of Dermatological Research / Issue 2/2007
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-007-0743-z

Other articles of this Issue 2/2007

Archives of Dermatological Research 2/2007 Go to the issue