Skip to main content
Top
Published in: Basic Research in Cardiology 4/2017

01-07-2017 | Original Contribution

Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart

Authors: Patrick T. Kang, Chwen-Lih Chen, Paul Lin, William M. Chilian, Yeong-Renn Chen

Published in: Basic Research in Cardiology | Issue 4/2017

Login to get access

Abstract

The mitochondrial electrochemical gradient (Δp), which comprises the pH gradient (ΔpH) and the membrane potential (ΔΨ), is crucial in controlling energy transduction. During myocardial ischemia and reperfusion (IR), mitochondrial dysfunction mediates superoxide (·O2 ) and H2O2 overproduction leading to oxidative injury. However, the role of ΔpH and ΔΨ in post-ischemic injury is not fully established. Here we studied mitochondria from the risk region of rat hearts subjected to 30 min of coronary ligation and 24 h of reperfusion in vivo. In the presence of glutamate, malate and ADP, normal mitochondria (mitochondria of non-ischemic region, NR) exhibited a heightened state 3 oxygen consumption rate (OCR) and reduced ·O2 and H2O2 production when compared to state 2 conditions. Oligomycin (increases ΔpH by inhibiting ATP synthase) increased ·O2 and H2O2 production in normal mitochondria, but not significantly in the mitochondria of the risk region (IR mitochondria or post-ischemic mitochondria), indicating that normal mitochondrial ·O2 and H2O2 generation is dependent on ΔpH and that IR impaired the ΔpH of normal mitochondria. Conversely, nigericin (dissipates ΔpH) dramatically reduced ·O2 and H2O2 generation by normal mitochondria under state 4 conditions, and this nigericin quenching effect was less pronounced in IR mitochondria. Nigericin also increased mitochondrial OCR, and predisposed normal mitochondria to a more oxidized redox status assessed by increased oxidation of cyclic hydroxylamine, CM-H. IR mitochondria, although more oxidized than normal mitochondria, were not responsive to nigericin-induced CM-H oxidation, which is consistent with the result that IR induced ΔpH impairment in normal mitochondria. Valinomycin, a K+ ionophore used to dissipate ΔΨ, drastically diminished ·O2 and H2O2 generation by normal mitochondria, but less pronounced effect on IR mitochondria under state 4 conditions, indicating that ΔΨ also contributed to ·O2 generation by normal mitochondria and that IR mediated ΔΨ impairment. However, there was no significant difference in valinomycin-induced CM-H oxidation between normal and IR mitochondria. In conclusion, under normal conditions the proton backpressure imposed by ΔpH restricts electron flow, controls a limited amount of ·O2 generation, and results in a more reduced myocardium; however, IR causes ΔpH impairment and prompts a more oxidized myocardium.
Appendix
Available only for authorised users
Literature
3.
4.
go back to reference Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541PubMed Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541PubMed
5.
go back to reference Ferrari R, Ceconi C, Curello S, Cargnoni A, Pasini E, De Giuli F, Albertini A (1991) Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr 53:215S–222SPubMed Ferrari R, Ceconi C, Curello S, Cargnoni A, Pasini E, De Giuli F, Albertini A (1991) Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr 53:215S–222SPubMed
12.
13.
go back to reference Chen CL, Chen J, Rawale S, Varadharaj S, Kaumaya PP, Zweier JL, Chen YR (2008) Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J Biol Chem 283:27991–28003. doi:10.1074/jbc.M802691200 CrossRefPubMedPubMedCentral Chen CL, Chen J, Rawale S, Varadharaj S, Kaumaya PP, Zweier JL, Chen YR (2008) Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J Biol Chem 283:27991–28003. doi:10.​1074/​jbc.​M802691200 CrossRefPubMedPubMedCentral
14.
go back to reference Chen J, Chen CL, Rawale S, Chen CA, Zweier JL, Kaumaya PT, Chen YR (2010) Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex I. J Biol Chem 285:3168–3180. doi:10.1074/jbc.M109.056846 CrossRefPubMed Chen J, Chen CL, Rawale S, Chen CA, Zweier JL, Kaumaya PT, Chen YR (2010) Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex I. J Biol Chem 285:3168–3180. doi:10.​1074/​jbc.​M109.​056846 CrossRefPubMed
16.
18.
go back to reference Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, Zweier JL (2007) Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 292:H1541–H1550. doi:10.1152/ajpheart.00264.2006 CrossRefPubMed Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, Zweier JL (2007) Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 292:H1541–H1550. doi:10.​1152/​ajpheart.​00264.​2006 CrossRefPubMed
21.
go back to reference Duling DR (1994) Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B 104:105–110CrossRefPubMed Duling DR (1994) Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B 104:105–110CrossRefPubMed
22.
go back to reference Doliba NM, Doliba NM, Chang Q, Babsky AM, Wroblewski K, Natelson BH, Osbakken MD (1999) Mitochondrial oxidative phosphorylation in heart from stressed cardiomyopathic hamsters. J Mol Cell Cardiol 31:543–553. doi:10.1006/jmcc.1998.0890 CrossRefPubMed Doliba NM, Doliba NM, Chang Q, Babsky AM, Wroblewski K, Natelson BH, Osbakken MD (1999) Mitochondrial oxidative phosphorylation in heart from stressed cardiomyopathic hamsters. J Mol Cell Cardiol 31:543–553. doi:10.​1006/​jmcc.​1998.​0890 CrossRefPubMed
23.
go back to reference Ferrari R (1996) The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 28(Suppl 1):S1–10PubMed Ferrari R (1996) The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 28(Suppl 1):S1–10PubMed
24.
go back to reference Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333PubMed Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333PubMed
25.
go back to reference Gardner PR, Fridovich I (1992) Inactivation–reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763PubMed Gardner PR, Fridovich I (1992) Inactivation–reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763PubMed
26.
go back to reference Gardner PR, Nguyen DD, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 91:12248–12252CrossRefPubMedPubMedCentral Gardner PR, Nguyen DD, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 91:12248–12252CrossRefPubMedPubMedCentral
27.
go back to reference Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069CrossRefPubMed Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069CrossRefPubMed
28.
go back to reference Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294:C460–C466. doi:10.1152/ajpcell.00211.2007 CrossRefPubMed Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294:C460–C466. doi:10.​1152/​ajpcell.​00211.​2007 CrossRefPubMed
32.
go back to reference Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL (2001) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 280:H2770–H2778PubMed Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL (2001) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 280:H2770–H2778PubMed
38.
go back to reference Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem 283:24801–24815. doi:10.1074/jbc.M803432200 CrossRefPubMedPubMedCentral Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem 283:24801–24815. doi:10.​1074/​jbc.​M803432200 CrossRefPubMedPubMedCentral
39.
go back to reference Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976CrossRefPubMed Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976CrossRefPubMed
40.
go back to reference Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277CrossRefPubMed Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277CrossRefPubMed
Metadata
Title
Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart
Authors
Patrick T. Kang
Chwen-Lih Chen
Paul Lin
William M. Chilian
Yeong-Renn Chen
Publication date
01-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 4/2017
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-017-0626-1

Other articles of this Issue 4/2017

Basic Research in Cardiology 4/2017 Go to the issue