Skip to main content
Top
Published in: Basic Research in Cardiology 6/2010

01-11-2010 | Contribution

TNFα protects cardiac mitochondria independently of its cell surface receptors

Authors: Lydia Lacerda, Joy McCarthy, Shazia F. K. Mungly, Edward G. Lynn, Michael N. Sack, Lionel H. Opie, Sandrine Lecour

Published in: Basic Research in Cardiology | Issue 6/2010

Login to get access

Abstract

Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2−/−). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-l-cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O2/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2−/− mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia–reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2−/− mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia–reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated by ROS and sphingolipids.
Appendix
Available only for authorised users
Literature
1.
go back to reference Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214PubMed Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214PubMed
2.
go back to reference Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104:181–188CrossRefPubMed Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104:181–188CrossRefPubMed
3.
go back to reference Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451CrossRefPubMed Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451CrossRefPubMed
4.
go back to reference Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147CrossRefPubMed Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147CrossRefPubMed
5.
go back to reference Budnikov E, Postnov A, Doroshchuk AD, Afanasjeva GV, Postnov Iu V (2002) Decreased ATP-synthesis ability of liver mitochondria in spontaneously hypertensive rats (SHR): role of calcium overload of the mitochondria. Kardiologiia 42:47–50PubMed Budnikov E, Postnov A, Doroshchuk AD, Afanasjeva GV, Postnov Iu V (2002) Decreased ATP-synthesis ability of liver mitochondria in spontaneously hypertensive rats (SHR): role of calcium overload of the mitochondria. Kardiologiia 42:47–50PubMed
6.
go back to reference Busquets S, Aranda X, Ribas-Carbo M, Azcon-Bieto J, Lopez-Soriano FJ, Argiles JM (2003) Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. Cytokine 22:1–4CrossRefPubMed Busquets S, Aranda X, Ribas-Carbo M, Azcon-Bieto J, Lopez-Soriano FJ, Argiles JM (2003) Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. Cytokine 22:1–4CrossRefPubMed
7.
go back to reference Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768PubMed Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768PubMed
8.
go back to reference Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 503:7–12CrossRefPubMed Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 503:7–12CrossRefPubMed
9.
go back to reference Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486(Pt 1):1–13PubMed Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486(Pt 1):1–13PubMed
10.
go back to reference Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104:131–139CrossRefPubMed Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104:131–139CrossRefPubMed
11.
go back to reference Dorge H, Schulz R, Belesjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker A, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNFα in contractile dysfunction. J Mol Cell Cardiol 34:51–62 Dorge H, Schulz R, Belesjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker A, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNFα in contractile dysfunction. J Mol Cell Cardiol 34:51–62
12.
go back to reference Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, Yakirevich V (1996) Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol 28:247–252CrossRefPubMed Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, Yakirevich V (1996) Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol 28:247–252CrossRefPubMed
13.
go back to reference Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154CrossRefPubMed Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154CrossRefPubMed
14.
go back to reference Jin ZQ, Goetzl EJ, Karliner JS (2004) Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110:1980–1989CrossRefPubMed Jin ZQ, Goetzl EJ, Karliner JS (2004) Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110:1980–1989CrossRefPubMed
15.
16.
go back to reference Kimura H, Shintani-Ishida K, Nakajima M, Liu S, Matsumoto K, Yoshida K (2006) Ischemic preconditioning or p38 MAP kinase inhibition attenuates myocardial TNF alpha production and mitochondria damage in brief myocardial ischemia. Life Sci 78:1901–1910CrossRefPubMed Kimura H, Shintani-Ishida K, Nakajima M, Liu S, Matsumoto K, Yoshida K (2006) Ischemic preconditioning or p38 MAP kinase inhibition attenuates myocardial TNF alpha production and mitochondria damage in brief myocardial ischemia. Life Sci 78:1901–1910CrossRefPubMed
17.
go back to reference Lacerda L, Smith RM, Opie L, Lecour S (2006) TNFalpha-induced cytoprotection requires the production of free radicals within mitochondria in C2C12 myotubes. Life Sci 79:2194–2201CrossRefPubMed Lacerda L, Smith RM, Opie L, Lecour S (2006) TNFalpha-induced cytoprotection requires the production of free radicals within mitochondria in C2C12 myotubes. Life Sci 79:2194–2201CrossRefPubMed
18.
go back to reference Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208CrossRefPubMed Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208CrossRefPubMed
19.
go back to reference Lancaster JR Jr, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174CrossRefPubMed Lancaster JR Jr, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174CrossRefPubMed
20.
go back to reference Lecour S (2009) Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40CrossRefPubMed Lecour S (2009) Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40CrossRefPubMed
21.
go back to reference Lecour S, Owira P, Opie LH (2006) Ceramide-induced preconditioning involves reactive oxygen species. Life Sci 78:1702–1706CrossRefPubMed Lecour S, Owira P, Opie LH (2006) Ceramide-induced preconditioning involves reactive oxygen species. Life Sci 78:1702–1706CrossRefPubMed
22.
go back to reference Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518CrossRefPubMed Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518CrossRefPubMed
23.
go back to reference Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918CrossRefPubMed Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918CrossRefPubMed
24.
go back to reference Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumor necrosis factor is delivered to mitochondria where a tumor necrosis factor-binding protein is localized. Lab Invest 78:1583–1589PubMed Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumor necrosis factor is delivered to mitochondria where a tumor necrosis factor-binding protein is localized. Lab Invest 78:1583–1589PubMed
25.
go back to reference Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumour necrosis factor is trafficked to a mitochondrial tumour necrosis factor binding protein. Biochem Soc Trans 26:S316PubMed Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumour necrosis factor is trafficked to a mitochondrial tumour necrosis factor binding protein. Biochem Soc Trans 26:S316PubMed
26.
go back to reference Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164CrossRefPubMed Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164CrossRefPubMed
27.
go back to reference Macouillard-Poulletier de G, Belaud-Rotureau MA, Voisin P, Leducq N, Belloc F, Canioni P, Diolez P (1998) Flow cytometric analysis of mitochondrial activity in situ: application to acetylceramide-induced mitochondrial swelling and apoptosis. Cytometry 33:333–339 Macouillard-Poulletier de G, Belaud-Rotureau MA, Voisin P, Leducq N, Belloc F, Canioni P, Diolez P (1998) Flow cytometric analysis of mitochondrial activity in situ: application to acetylceramide-induced mitochondrial swelling and apoptosis. Cytometry 33:333–339
28.
go back to reference McCarthy J, McLeod CJ, Minners J, Essop MF, Ping P, Sack MN (2005) PKCepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve—a putative mechanism in PKCepsilon cardioprotection. J Mol Cell Cardiol 38:697–700CrossRefPubMed McCarthy J, McLeod CJ, Minners J, Essop MF, Ping P, Sack MN (2005) PKCepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve—a putative mechanism in PKCepsilon cardioprotection. J Mol Cell Cardiol 38:697–700CrossRefPubMed
29.
go back to reference McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MN (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476CrossRefPubMed McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MN (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476CrossRefPubMed
30.
go back to reference McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF Jr, Sack MN (2004) Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 110:534–539CrossRefPubMed McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF Jr, Sack MN (2004) Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 110:534–539CrossRefPubMed
31.
go back to reference Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–R595PubMed Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–R595PubMed
32.
go back to reference Minners J, Lacerda L, McCarthy J, Meiring JJ, Yellon DM, Sack MN (2001) Ischemic and pharmacological preconditioning in Girardi cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res 89:787–792CrossRefPubMed Minners J, Lacerda L, McCarthy J, Meiring JJ, Yellon DM, Sack MN (2001) Ischemic and pharmacological preconditioning in Girardi cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res 89:787–792CrossRefPubMed
33.
go back to reference Nadtochiy SM, Tompkins AJ, Brookes PS (2006) Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J 395:611–618CrossRefPubMed Nadtochiy SM, Tompkins AJ, Brookes PS (2006) Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J 395:611–618CrossRefPubMed
34.
go back to reference Nogueira V, Rigoulet M, Piquet MA, Devin A, Fontaine E, Leverve XM (2001) Mitochondrial respiratory chain adjustment to cellular energy demand. J Biol Chem 276:46104–46110CrossRefPubMed Nogueira V, Rigoulet M, Piquet MA, Devin A, Fontaine E, Leverve XM (2001) Mitochondrial respiratory chain adjustment to cellular energy demand. J Biol Chem 276:46104–46110CrossRefPubMed
35.
go back to reference Pellieux C, Montessuit C, Papageorgiou I, Lerch R (2009) Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha. Cardiovasc Res 82:341–350CrossRefPubMed Pellieux C, Montessuit C, Papageorgiou I, Lerch R (2009) Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha. Cardiovasc Res 82:341–350CrossRefPubMed
36.
go back to reference Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1:45–55PubMed Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1:45–55PubMed
37.
go back to reference Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356CrossRefPubMed Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356CrossRefPubMed
38.
go back to reference Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486CrossRefPubMed Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486CrossRefPubMed
39.
go back to reference Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357CrossRefPubMed Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357CrossRefPubMed
40.
go back to reference Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323PubMed Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323PubMed
41.
go back to reference Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805CrossRefPubMed Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805CrossRefPubMed
42.
go back to reference Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102CrossRefPubMed Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102CrossRefPubMed
43.
go back to reference Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146CrossRefPubMed Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146CrossRefPubMed
44.
go back to reference Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18CrossRefPubMed Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18CrossRefPubMed
45.
go back to reference Smith RM, Suleman N, McCarthy J, Sack MN (2002) Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFalpha gene. Cardiovasc Res 55:553–560CrossRefPubMed Smith RM, Suleman N, McCarthy J, Sack MN (2002) Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFalpha gene. Cardiovasc Res 55:553–560CrossRefPubMed
46.
go back to reference Sordahl LA, Besch HR Jr, Allen JC, Crow C, Lindenmayer GE, Schwartz A (1971) Enzymatic aspects of the cardiac muscle cell: mitochondria, sarcoplasmic reticulum and nonovalent cation active transport system. Methods Achiev Exp Pathol 5:287–346PubMed Sordahl LA, Besch HR Jr, Allen JC, Crow C, Lindenmayer GE, Schwartz A (1971) Enzymatic aspects of the cardiac muscle cell: mitochondria, sarcoplasmic reticulum and nonovalent cation active transport system. Methods Achiev Exp Pathol 5:287–346PubMed
47.
go back to reference Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietska I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization. Circ Res 90(7):807–813 Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietska I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization. Circ Res 90(7):807–813
48.
go back to reference Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493PubMed Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493PubMed
49.
go back to reference Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196CrossRefPubMed Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196CrossRefPubMed
50.
go back to reference Vessey DA, Li L, Kelley M, Karliner JS (2008) Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia. Biochem Biophys Res Commun 375:425–429CrossRefPubMed Vessey DA, Li L, Kelley M, Karliner JS (2008) Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia. Biochem Biophys Res Commun 375:425–429CrossRefPubMed
51.
go back to reference Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114:I282–I289CrossRefPubMed Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114:I282–I289CrossRefPubMed
52.
go back to reference Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, Si R, Zhang R, Guo W, Cao F, Wang H (2010) A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis 15:488–498CrossRefPubMed Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, Si R, Zhang R, Guo W, Cao F, Wang H (2010) A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis 15:488–498CrossRefPubMed
Metadata
Title
TNFα protects cardiac mitochondria independently of its cell surface receptors
Authors
Lydia Lacerda
Joy McCarthy
Shazia F. K. Mungly
Edward G. Lynn
Michael N. Sack
Lionel H. Opie
Sandrine Lecour
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
Basic Research in Cardiology / Issue 6/2010
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-010-0113-4

Other articles of this Issue 6/2010

Basic Research in Cardiology 6/2010 Go to the issue