Skip to main content
Top
Published in: European Journal of Nutrition 8/2015

01-12-2015 | Review

Advanced physiological roles of guanidinoacetic acid

Author: Sergej M. Ostojic

Published in: European Journal of Nutrition | Issue 8/2015

Login to get access

Abstract

Dietary guanidinoacetic acid (GAA) seems to improve cellular bioenergetics by stimulating creatine biosynthesis. However, GAA could have other biological functions that might affect its possible use as a food ingredient in human nutrition. In this paper, we identified several alternative physiological roles of supplemental GAA, including the stimulation of hormonal release and neuromodulation, an alteration of metabolic utilization of arginine, and an adjustment of oxidant–antioxidant status. A better knowledge of how GAA affects human physiology may facilitate its use as an experimental nutritional intervention for novel purposes and conditions.
Literature
1.
go back to reference Weber CJ (1934) Isolation of glycocyamine from urine. Exp Biol Med 32:172–174CrossRef Weber CJ (1934) Isolation of glycocyamine from urine. Exp Biol Med 32:172–174CrossRef
2.
go back to reference Davenport HW, Fisher RB, Wilhelmi AE (1938) The metabolism of creatine: the role of glycocyamine in creatine synthesis. Biochem J 32(2):262–270CrossRef Davenport HW, Fisher RB, Wilhelmi AE (1938) The metabolism of creatine: the role of glycocyamine in creatine synthesis. Biochem J 32(2):262–270CrossRef
3.
go back to reference Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293(6):F1799–F1804CrossRef Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293(6):F1799–F1804CrossRef
4.
go back to reference Tsubakihara Y, Suzuki A, Hayashi T, Shoji T, Togawa M, Okada N (1999) The effect of guanidinoacetic acid supplementation in patients with chronic renal failure. In: Mori A, Ishida M, Clark JF (eds) Guanidino compounds in biology and medicine, vol 5. Blackwell Science Asia, Tokyo, pp 139–144 Tsubakihara Y, Suzuki A, Hayashi T, Shoji T, Togawa M, Okada N (1999) The effect of guanidinoacetic acid supplementation in patients with chronic renal failure. In: Mori A, Ishida M, Clark JF (eds) Guanidino compounds in biology and medicine, vol 5. Blackwell Science Asia, Tokyo, pp 139–144
6.
go back to reference Ostojic SM, Hoffman JR, Stojanovic M, Drid P (2015) 28-day GAA supplementation improves clinical outcomes in patients with chronic fatigue syndrome. Med Sci Sport Exerc 48(5):S47 Ostojic SM, Hoffman JR, Stojanovic M, Drid P (2015) 28-day GAA supplementation improves clinical outcomes in patients with chronic fatigue syndrome. Med Sci Sport Exerc 48(5):S47
7.
go back to reference McBreairty LE, Robinson JL, Furlong KR, Brunton JA, Bertolo RF (2015) Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs. PLoS One 10(6):e0131563CrossRef McBreairty LE, Robinson JL, Furlong KR, Brunton JA, Bertolo RF (2015) Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs. PLoS One 10(6):e0131563CrossRef
8.
go back to reference Van Zandt V, Borsook H (1951) New biological approach to the treatment of congestive heart failure. Ann West Med Surg 5(10):856–862 Van Zandt V, Borsook H (1951) New biological approach to the treatment of congestive heart failure. Ann West Med Surg 5(10):856–862
9.
go back to reference Borsook ME, Billig HK, Golseth JG (1952) Betaine and glycocyamine in the treatment of disability resulting from acute anterior poliomyelitis. Ann West Med Surg 6(7):423–427 Borsook ME, Billig HK, Golseth JG (1952) Betaine and glycocyamine in the treatment of disability resulting from acute anterior poliomyelitis. Ann West Med Surg 6(7):423–427
10.
go back to reference Aynsley-Green A, Alberti KG (1974) In vivo stimulation of insulin secretion by guanidine derivatives in the rat. Horm Metab Res 6(2):115–120CrossRef Aynsley-Green A, Alberti KG (1974) In vivo stimulation of insulin secretion by guanidine derivatives in the rat. Horm Metab Res 6(2):115–120CrossRef
11.
go back to reference Alsever RN, Georg RH, Sussman KE (1970) Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology 86(2):332–336CrossRef Alsever RN, Georg RH, Sussman KE (1970) Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology 86(2):332–336CrossRef
12.
go back to reference Marco J, Calle C, Hedo JA, Villanueva ML (1976) Glucagon-releasing activity of guanidine compounds in mouse pancreatic islets. FEBS Lett 64(1):52–54CrossRef Marco J, Calle C, Hedo JA, Villanueva ML (1976) Glucagon-releasing activity of guanidine compounds in mouse pancreatic islets. FEBS Lett 64(1):52–54CrossRef
13.
go back to reference Charles S, Tamagawa T, Henquin JC (1982) A single mechanism for the stimulation of insulin release and 86Rb+ efflux from rat islets by cationic amino acids. Biochem J 208(2):301–308CrossRef Charles S, Tamagawa T, Henquin JC (1982) A single mechanism for the stimulation of insulin release and 86Rb+ efflux from rat islets by cationic amino acids. Biochem J 208(2):301–308CrossRef
14.
go back to reference Meglasson MD, Wilson JM, Yu JH, Robinson DD, Wyse BM, de Souza CJ (1993) Antihyperglycemic action of guanidinoalkanoic acids: 3-guanidinopropionic acid ameliorates hyperglycemia in diabetic KKAy and C57BL6Job/ob mice and increases glucose disappearance in rhesus monkeys. J Pharmacol Exp Ther 266(3):1454–1462 Meglasson MD, Wilson JM, Yu JH, Robinson DD, Wyse BM, de Souza CJ (1993) Antihyperglycemic action of guanidinoalkanoic acids: 3-guanidinopropionic acid ameliorates hyperglycemia in diabetic KKAy and C57BL6Job/ob mice and increases glucose disappearance in rhesus monkeys. J Pharmacol Exp Ther 266(3):1454–1462
15.
go back to reference Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37(1):29–41CrossRef Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37(1):29–41CrossRef
16.
go back to reference Ringel J, Lemme A, Redshaw MS, Damme K (2008) The effects of supplemental guanidino acetic acid as a precursor of creatine in vegetable broiler diets on performance and carcass parameters. Poult Sci 87(Suppl 1):72 Ringel J, Lemme A, Redshaw MS, Damme K (2008) The effects of supplemental guanidino acetic acid as a precursor of creatine in vegetable broiler diets on performance and carcass parameters. Poult Sci 87(Suppl 1):72
17.
go back to reference Michiels J, Maertens L, Buyse J, Lemme A, Rademacher M, Dierick NA, De Smet S (2012) Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult Sci 91(2):402–412CrossRef Michiels J, Maertens L, Buyse J, Lemme A, Rademacher M, Dierick NA, De Smet S (2012) Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult Sci 91(2):402–412CrossRef
18.
go back to reference Dilger RN, Bryant-Angeloni K, Payne RL, Lemme A, Parsons CM (2013) Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult Sci 92(1):171–177CrossRef Dilger RN, Bryant-Angeloni K, Payne RL, Lemme A, Parsons CM (2013) Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult Sci 92(1):171–177CrossRef
19.
go back to reference Tong BC, Barbul A (2004) Cellular and physiological effects of arginine. Mini Rev Med Chem 4(8):823–832CrossRef Tong BC, Barbul A (2004) Cellular and physiological effects of arginine. Mini Rev Med Chem 4(8):823–832CrossRef
20.
go back to reference De Deyn PP, Macdonald RL (1990) Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol 28(5):627–633CrossRef De Deyn PP, Macdonald RL (1990) Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol 28(5):627–633CrossRef
21.
go back to reference Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11(2):298–307CrossRef Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11(2):298–307CrossRef
22.
go back to reference Ostojic SM, Stojanovic MD (2015) Guanidinoacetic acid loading affects plasma & #x03B3;-aminobutyric acid in healthy men. Eur J Nutr 54(5):855–858CrossRef Ostojic SM, Stojanovic MD (2015) Guanidinoacetic acid loading affects plasma & #x03B3;-aminobutyric acid in healthy men. Eur J Nutr 54(5):855–858CrossRef
23.
go back to reference James E, Morrison JF (1966) The reaction of phosphagens with ATP: creatine phosphotransferase. Biochim Biophys Acta 128(2):327–336CrossRef James E, Morrison JF (1966) The reaction of phosphagens with ATP: creatine phosphotransferase. Biochim Biophys Acta 128(2):327–336CrossRef
24.
go back to reference Rowley GL, Greenleaf AL, Kenyon GL (1971) On the specificity of creatine kinase. New glycocyamines and glycocyamine analogs related to creatine. J Am Chem Soc 93(12):5542–5551CrossRef Rowley GL, Greenleaf AL, Kenyon GL (1971) On the specificity of creatine kinase. New glycocyamines and glycocyamine analogs related to creatine. J Am Chem Soc 93(12):5542–5551CrossRef
25.
go back to reference Lygate CA, Aksentijevic D, Dawson D, ten Hove M, Phillips D, de Bono JP, Medway DJ, Sebag-Montefiore L, Hunyor I, Channon KM, Clarke K, Zervou S, Watkins H, Balaban RS, Neubauer S (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955CrossRef Lygate CA, Aksentijevic D, Dawson D, ten Hove M, Phillips D, de Bono JP, Medway DJ, Sebag-Montefiore L, Hunyor I, Channon KM, Clarke K, Zervou S, Watkins H, Balaban RS, Neubauer S (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955CrossRef
26.
go back to reference Boehm EA, Radda GK, Tomlin H, Clark JF (1996) The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim Biophys Acta 1274(3):119–128CrossRef Boehm EA, Radda GK, Tomlin H, Clark JF (1996) The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim Biophys Acta 1274(3):119–128CrossRef
27.
go back to reference Kan HE, Renema WK, Isbrandt D, Heerschap A (2004) Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 560(1):219–229CrossRef Kan HE, Renema WK, Isbrandt D, Heerschap A (2004) Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 560(1):219–229CrossRef
28.
go back to reference Zugno AI, Stefanello FM, Scherer EB, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33(9):1804–1810CrossRef Zugno AI, Stefanello FM, Scherer EB, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33(9):1804–1810CrossRef
29.
go back to reference Mori A, Kohno M, Masumizu T, Nosa Y, Packer I (1996) Guanidino compounds generate reactive oxygen species. Biochem Mol Biol Int 40(1):135–143 Mori A, Kohno M, Masumizu T, Nosa Y, Packer I (1996) Guanidino compounds generate reactive oxygen species. Biochem Mol Biol Int 40(1):135–143
30.
go back to reference Wang LS, Shi BM, Shan AS, Zhang YY (2012) Effects of guanidinoacetic acid on growth performance, meat quality and antioxidation in growing-finishing pigs. J Anim Vet Adv 11(5):631–636CrossRef Wang LS, Shi BM, Shan AS, Zhang YY (2012) Effects of guanidinoacetic acid on growth performance, meat quality and antioxidation in growing-finishing pigs. J Anim Vet Adv 11(5):631–636CrossRef
31.
go back to reference Hiramatsu M (2003) A role of guanidino compounds in the brain. Mol Cell Biochem 244(1–2):57–62CrossRef Hiramatsu M (2003) A role of guanidino compounds in the brain. Mol Cell Biochem 244(1–2):57–62CrossRef
32.
go back to reference Major RH, Weber CJ (1928) The effects of glycocyamine and glyocyamidine on the blood pressure. Johns Hopkins Med J 42:207 Major RH, Weber CJ (1928) The effects of glycocyamine and glyocyamidine on the blood pressure. Johns Hopkins Med J 42:207
33.
go back to reference Major RH (1929) Observations on the effects of certain guanidine compounds upon the blood pressure. Tr A Am Physician 44:332 Major RH (1929) Observations on the effects of certain guanidine compounds upon the blood pressure. Tr A Am Physician 44:332
34.
go back to reference Major RH (1930) Some observations upon the physiologic and therapeutic action of glycocyamine. J Clin Investig 9(1):24 Major RH (1930) Some observations upon the physiologic and therapeutic action of glycocyamine. J Clin Investig 9(1):24
35.
go back to reference Ginsberg AM, Stoland OO (1931) The effect of glycocyamine on the coronary circulation. Pharmacol Exp Ther 41(2):195–208 Ginsberg AM, Stoland OO (1931) The effect of glycocyamine on the coronary circulation. Pharmacol Exp Ther 41(2):195–208
36.
go back to reference Udenfriend S, Creveling CR, Ozaki M, Daly JW, Witkop B (1959) Inhibitors of norepinephrine metabolism in vivo. Arch Biochem Biophys 84:249–251CrossRef Udenfriend S, Creveling CR, Ozaki M, Daly JW, Witkop B (1959) Inhibitors of norepinephrine metabolism in vivo. Arch Biochem Biophys 84:249–251CrossRef
37.
go back to reference Charlier R (1961) Coronary vasodilators: international series of monographs on pure and applied biology division: modern trends in physiological sciences, vol 10. Pergamon Press, Oxford Charlier R (1961) Coronary vasodilators: international series of monographs on pure and applied biology division: modern trends in physiological sciences, vol 10. Pergamon Press, Oxford
38.
go back to reference Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10(1):4–18CrossRef Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10(1):4–18CrossRef
39.
go back to reference Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166CrossRef Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166CrossRef
40.
go back to reference Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244(1–2):143–150CrossRef Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244(1–2):143–150CrossRef
41.
go back to reference Braisant O (2012) Creatine and guanidionoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664CrossRef Braisant O (2012) Creatine and guanidionoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664CrossRef
Metadata
Title
Advanced physiological roles of guanidinoacetic acid
Author
Sergej M. Ostojic
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 8/2015
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-015-1050-7

Other articles of this Issue 8/2015

European Journal of Nutrition 8/2015 Go to the issue