Skip to main content
Top
Published in: Child's Nervous System 7/2006

01-07-2006 | Original Paper

Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children

Authors: Paul Kremer, V. Tronnier, H. H. Steiner, R. Metzner, F. Ebinger, D. Rating, M. Hartmann, A. Seitz, A. Unterberg, C. R. Wirtz

Published in: Child's Nervous System | Issue 7/2006

Login to get access

Abstract

Introduction

Despite the introduction of neuronavigational systems, radical tumor removal is still problematic in many neurosurgical procedures. Thus, direct intraoperative imaging for tumor resection control was implemented with an intraoperative magnetic resonance imaging (ioMRI) scanner installed in the operating room. Whereas most procedures with ioMRI were carried out in adults, we summarize 7 years of experience using ioMRI in children for interventional neurosurgical procedures or for tumor resection control.

Method

An open magnetic resonance scanner (Magnetom Open 0.2 T) was installed in the neurosurgical operating room. For tumor resection control, ioMRI was performed in 35 procedures. After the ioMRI scans were analyzed with respect to quality, the identification of residual tumor was considered by the attending neuroradiologist and neurosurgeon. If residual tumor tissue was present, a new three-dimensional (3D) dataset was acquired to update the neuronavigation; subsequently, the tumor resection was extended. In all these procedures, the results of the ioMRI were checked by an early postoperative high-field magnetic resonance imaging (MRI) study. In addition, ioMRI was carried out in ten other children to monitor interventional neurosurgical procedures.

Results

In all children, ioMRI was adequate both for tumor resection control and monitoring of interventional procedures. Primary radical removal of tumor was reached in 40% as confirmed by ioMRI, but in 60% of the patients, the tumor resection procedure was extended after residual tumor was detected using the new 3D dataset for navigational update. By using ioMRI, radical tumor removal improved up to 83% as confirmed by early postoperative MRI. Procedure-related complications were not seen in our series. For all MR-guided biopsies, histology findings could be confirmed, and aspiration of intracranial cysts or abscesses could be monitored online.

Conclusion

IoMRI using the open magnetom is suitable for detecting residual tumor tissue, can compensate for the phenomenon of brain shift using a new intraopertive 3D dataset for extended tumor resection, and is capable of monitoring interventional neurosurgical procedures. By using ioMRI for tumor resection control, the degree of tumor resection could be significantly improved.
Literature
1.
go back to reference Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–61PubMedCrossRef Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–61PubMedCrossRef
2.
go back to reference Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the Children's Cancer Group. Neurosurgery 38:265–271PubMedCrossRef Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the Children's Cancer Group. Neurosurgery 38:265–271PubMedCrossRef
3.
go back to reference Bowers DC, Krause TP, Aronson LJ, Barzi A, Burger PC, Carson BS, Weingart JD, Wharam MD, Melhem ER, Cohen KJ (2001) Second surgery for recurrent pilocytic astrocytoma in children. Pediatr Neurosurg 34:229–234PubMedCrossRef Bowers DC, Krause TP, Aronson LJ, Barzi A, Burger PC, Carson BS, Weingart JD, Wharam MD, Melhem ER, Cohen KJ (2001) Second surgery for recurrent pilocytic astrocytoma in children. Pediatr Neurosurg 34:229–234PubMedCrossRef
4.
go back to reference Bucci MK, Maity A, Janss AJ, Belasco JB, Fisher MJ, Tochner ZA, Rorke L, Sutton LN, Phillips PC, Shu HK (2004) Near complete surgical resection predicts a favorable outcome in pediatric patients with nonbrainstem, malignant gliomas: results from a single center in the magnetic resonance imaging era. Cancer 101:817–824PubMedCrossRef Bucci MK, Maity A, Janss AJ, Belasco JB, Fisher MJ, Tochner ZA, Rorke L, Sutton LN, Phillips PC, Shu HK (2004) Near complete surgical resection predicts a favorable outcome in pediatric patients with nonbrainstem, malignant gliomas: results from a single center in the magnetic resonance imaging era. Cancer 101:817–824PubMedCrossRef
5.
go back to reference Fernandez C, Figarella-Branger D, Girard N, Bouvier-Labit C, Gouvernet J, Paz Paredes A, Lena G (2003) Pilocytic astrocytomas in children: prognostic factors—a retrospective study of 80 cases. Neurosurgery 53:544–553PubMedCrossRef Fernandez C, Figarella-Branger D, Girard N, Bouvier-Labit C, Gouvernet J, Paz Paredes A, Lena G (2003) Pilocytic astrocytomas in children: prognostic factors—a retrospective study of 80 cases. Neurosurgery 53:544–553PubMedCrossRef
6.
go back to reference Gwinn R, Cleary K, Medlock M (2000) Use of a portable CT scanner during resection of subcortical supratentorial astrocytomas of childhood. Pediatr Neurosurg 32:37–43PubMedCrossRef Gwinn R, Cleary K, Medlock M (2000) Use of a portable CT scanner during resection of subcortical supratentorial astrocytomas of childhood. Pediatr Neurosurg 32:37–43PubMedCrossRef
7.
go back to reference Kremer P, Forsting M, Ranaei G, Wuster C, Hamer J, Sartor K, Kunze S (2002) Magnetic resonance imaging after transsphenoidal surgery of clinically non-functional pituitary macroadenomas and its impact on detecting residual adenoma. Acta Neurochir (Wien) 144:433–443CrossRef Kremer P, Forsting M, Ranaei G, Wuster C, Hamer J, Sartor K, Kunze S (2002) Magnetic resonance imaging after transsphenoidal surgery of clinically non-functional pituitary macroadenomas and its impact on detecting residual adenoma. Acta Neurochir (Wien) 144:433–443CrossRef
8.
go back to reference Modha A, Vassilyadi M, George A, Kuehn S, Hsu E, Ventureyra EC (2000) Medulloblastoma in children—the Ottawa experience. Childs Nerv Syst 16:341–350PubMedCrossRef Modha A, Vassilyadi M, George A, Kuehn S, Hsu E, Ventureyra EC (2000) Medulloblastoma in children—the Ottawa experience. Childs Nerv Syst 16:341–350PubMedCrossRef
9.
go back to reference Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM III, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797PubMedCrossRef Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM III, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797PubMedCrossRef
10.
go back to reference Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 38:83–89PubMedCrossRef Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 38:83–89PubMedCrossRef
11.
go back to reference Reinacher PC, van Velthoven V (2003) Intraoperative ultrasound imaging: practical applicability as a real-time navigation system. Acta Neurochir Suppl 85:89–93PubMed Reinacher PC, van Velthoven V (2003) Intraoperative ultrasound imaging: practical applicability as a real-time navigation system. Acta Neurochir Suppl 85:89–93PubMed
12.
go back to reference Robertson PL, Zeltzer PM, Boyett JM, Rorke LB, Allen JC, Geyer JR, Stanley P, Li H, Albright AL, McGuire-Cullen P, Finlay JL, Stevens KR Jr, Milstein JM, Packer RJ, Wisoff J (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88:695–703PubMedCrossRef Robertson PL, Zeltzer PM, Boyett JM, Rorke LB, Allen JC, Geyer JR, Stanley P, Li H, Albright AL, McGuire-Cullen P, Finlay JL, Stevens KR Jr, Milstein JM, Packer RJ, Wisoff J (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88:695–703PubMedCrossRef
13.
go back to reference Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013PubMedCrossRef Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013PubMedCrossRef
14.
go back to reference Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–900PubMedCrossRef Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–900PubMedCrossRef
15.
go back to reference Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1112–1120PubMedCrossRef Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1112–1120PubMedCrossRef
16.
go back to reference Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ, McGuire-Cullen P, Turski PA, Sutton LN, Allen JC, Packer RJ, Finlay JL (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89:52–59PubMed Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ, McGuire-Cullen P, Turski PA, Sutton LN, Allen JC, Packer RJ, Finlay JL (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89:52–59PubMed
Metadata
Title
Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children
Authors
Paul Kremer
V. Tronnier
H. H. Steiner
R. Metzner
F. Ebinger
D. Rating
M. Hartmann
A. Seitz
A. Unterberg
C. R. Wirtz
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
Child's Nervous System / Issue 7/2006
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-005-0030-2

Other articles of this Issue 7/2006

Child's Nervous System 7/2006 Go to the issue