Skip to main content
Top
Published in: European Radiology 9/2022

Open Access 28-03-2022 | Magnetic Resonance Imaging | Neuro

Combined quantitative T2 mapping and [18F]FDG PET could improve lateralization of mesial temporal lobe epilepsy

Authors: Miao Zhang, Hui Huang, Wei Liu, Lihong Tang, Qikang Li, Jia Wang, Xinyun Huang, Xiaozhu Lin, Hongping Meng, Jin Wang, Shikun Zhan, Biao Li, Jie Luo

Published in: European Radiology | Issue 9/2022

Login to get access

Abstract

Objectives

To investigate whether quantitative T2 mapping is complementary to [18F]FDG PET in epileptogenic zone detection, thus improving the lateralization accuracy for drug-resistant mesial temporal lobe epilepsy (MTLE) using hybrid PET/MR.

Methods

We acquired routine structural MRI, T2-weighted FLAIR, whole brain T2 mapping, and [18F]FDG PET in 46 MTLE patients and healthy controls on a hybrid PET/MR scanner, followed with computing voxel-based z-score maps of patients in reference to healthy controls. Asymmetry indexes of the hippocampus were calculated for each imaging modality, which then enter logistic regression models as univariate or multivariate for lateralization. Stereoelectroencephalography (SEEG) recordings and clinical decisions were collected as gold standard.

Results

Routine structural MRI and T2w-FLAIR lateralized 47.8% (22/46) of MTLE patients, and FDG PET lateralized 84.8% (39/46). T2 mapping combined with [18F]FDG PET improved the lateralization accuracy by correctly lateralizing 95.6% (44/46) of MTLE patients. The asymmetry indexes of hippocampal T2 relaxometry and PET exhibit complementary tendency in detecting individual laterality, especially for MR-negative patients. In the quantitative analysis of z-score maps, the ipsilateral hippocampus had significantly lower SUVR (LTLE, p < 0.001; RTLE, p < 0.001) and higher T2 value (LTLE, p < 0.001; RTLE, p = 0.001) compared to the contralateral hippocampus. In logistic regression models, PET/T2 combination resulted in the highest AUC of 0.943 in predicting lateralization for MR-negative patients, followed by PET (AUC = 0.857) and T2 (AUC = 0.843).

Conclusions

The combination of quantitative T2 mapping and [18F]FDG PET could improve lateralization for temporal lobe epilepsy.

Key Points

Quantitative T2 mapping and18F-FDG PET are complementary in the characterization of hippocampal alterations of MR-negative temporal lobe epilepsy patients.
The combination of quantitative T2 and18F-FDG PET obtained from hybrid PET/MR could improve lateralization for temporal lobe epilepsy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Engel J Jr, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930PubMedPubMedCentralCrossRef Engel J Jr, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930PubMedPubMedCentralCrossRef
2.
go back to reference Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole GM Jr, Weinand ME (2013) Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg 115:2411–2418PubMedCrossRef Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole GM Jr, Weinand ME (2013) Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg 115:2411–2418PubMedCrossRef
4.
go back to reference Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ (2014) Epilepsies associated with hippocampal sclerosis. Acta Neuropathol 128:21–37PubMedCrossRef Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ (2014) Epilepsies associated with hippocampal sclerosis. Acta Neuropathol 128:21–37PubMedCrossRef
5.
go back to reference Malmgren K, Thom M (2012) Hippocampal sclerosis--origins and imaging. Epilepsia 53(Suppl 4):19–33PubMedCrossRef Malmgren K, Thom M (2012) Hippocampal sclerosis--origins and imaging. Epilepsia 53(Suppl 4):19–33PubMedCrossRef
6.
go back to reference Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499–530PubMedCrossRef Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499–530PubMedCrossRef
8.
go back to reference Blümcke I, Thom M, Aronica E et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329PubMedCrossRef Blümcke I, Thom M, Aronica E et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329PubMedCrossRef
9.
go back to reference Jackson GD, Berkovic SF, Duncan JS, Connelly A (1993) Optimizing the diagnosis of hippocampal sclerosis using MR imaging. AJNR Am J Neuroradiol 14:753–762PubMedPubMedCentral Jackson GD, Berkovic SF, Duncan JS, Connelly A (1993) Optimizing the diagnosis of hippocampal sclerosis using MR imaging. AJNR Am J Neuroradiol 14:753–762PubMedPubMedCentral
10.
go back to reference Bernasconi A, Cendes F, Theodore WH et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 60:1054–1068PubMedCrossRef Bernasconi A, Cendes F, Theodore WH et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 60:1054–1068PubMedCrossRef
11.
go back to reference Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S (2010) Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 89:310–318PubMedCrossRef Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S (2010) Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 89:310–318PubMedCrossRef
12.
go back to reference Cohen-Gadol AA, Wilhelmi BG, Collignon F et al (2006) Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg 104:513–524PubMedCrossRef Cohen-Gadol AA, Wilhelmi BG, Collignon F et al (2006) Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg 104:513–524PubMedCrossRef
13.
go back to reference Neuroimaging Subcommision of the International League Against Epilepsy (2000) Commission on Diagnostic Strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia 41:1350–1356CrossRef Neuroimaging Subcommision of the International League Against Epilepsy (2000) Commission on Diagnostic Strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia 41:1350–1356CrossRef
14.
go back to reference Lamusuo S, Jutila L, Ylinen A et al (2001) [18F]FDG-PET reveals temporal hypometabolism in patients with temporal lobe epilepsy even when quantitative MRI and histopathological analysis show only mild hippocampal damage. Arch Neurol 58:933–939PubMedCrossRef Lamusuo S, Jutila L, Ylinen A et al (2001) [18F]FDG-PET reveals temporal hypometabolism in patients with temporal lobe epilepsy even when quantitative MRI and histopathological analysis show only mild hippocampal damage. Arch Neurol 58:933–939PubMedCrossRef
15.
go back to reference Pustina D, Avants B, Sperling M et al (2015) Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin 9:20–31PubMedPubMedCentralCrossRef Pustina D, Avants B, Sperling M et al (2015) Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin 9:20–31PubMedPubMedCentralCrossRef
16.
go back to reference Carne RP, O’Brien TJ, Kilpatrick CJ et al (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285PubMedCrossRef Carne RP, O’Brien TJ, Kilpatrick CJ et al (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285PubMedCrossRef
17.
go back to reference Shang K, Wang J, Fan X et al (2018) Clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing seizure focus in patients with MRI-negative temporal lobe epilepsy. AJNR Am J Neuroradiol 39:1791–1798PubMedPubMedCentralCrossRef Shang K, Wang J, Fan X et al (2018) Clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing seizure focus in patients with MRI-negative temporal lobe epilepsy. AJNR Am J Neuroradiol 39:1791–1798PubMedPubMedCentralCrossRef
18.
go back to reference Kikuchi K, Togao O, Yamashita K et al (2021) Diagnostic accuracy for the epileptogenic zone detection in focal epilepsy could be higher in FDG-PET/MRI than in FDG-PET/CT. Eur Radiol 31:2915–2922PubMedCrossRef Kikuchi K, Togao O, Yamashita K et al (2021) Diagnostic accuracy for the epileptogenic zone detection in focal epilepsy could be higher in FDG-PET/MRI than in FDG-PET/CT. Eur Radiol 31:2915–2922PubMedCrossRef
19.
go back to reference Sato S, Iwasaki M, Suzuki H et al (2016) T2 relaxometry improves detection of non-sclerotic epileptogenic hippocampus. Epilepsy Res 126:1–9PubMedCrossRef Sato S, Iwasaki M, Suzuki H et al (2016) T2 relaxometry improves detection of non-sclerotic epileptogenic hippocampus. Epilepsy Res 126:1–9PubMedCrossRef
20.
go back to reference Jackson GD, Connelly A, Duncan JS, Grünewald RA, Gadian DG (1993) Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry. Neurology 43:1793–1799PubMedCrossRef Jackson GD, Connelly A, Duncan JS, Grünewald RA, Gadian DG (1993) Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry. Neurology 43:1793–1799PubMedCrossRef
21.
go back to reference Bernasconi A, Bernasconi N, Caramanos Z et al (2000) T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 12:739–746PubMedCrossRef Bernasconi A, Bernasconi N, Caramanos Z et al (2000) T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 12:739–746PubMedCrossRef
22.
go back to reference Goodkin O, Pemberton HG, Vos SB et al (2021) Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis. Eur Radiol 31:34–44PubMedCrossRef Goodkin O, Pemberton HG, Vos SB et al (2021) Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis. Eur Radiol 31:34–44PubMedCrossRef
23.
go back to reference Kubota BY, Coan AC, Yasuda CL, Cendes F (2015) T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI. Epilepsy Behav 46:103–108PubMedCrossRef Kubota BY, Coan AC, Yasuda CL, Cendes F (2015) T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI. Epilepsy Behav 46:103–108PubMedCrossRef
24.
go back to reference Van Paesschen W, Sisodiya S, Connelly A et al (1995) Quantitative hippocampal MRI and intractable temporal lobe epilepsy. Neurology 45:2233–2240PubMedCrossRef Van Paesschen W, Sisodiya S, Connelly A et al (1995) Quantitative hippocampal MRI and intractable temporal lobe epilepsy. Neurology 45:2233–2240PubMedCrossRef
25.
go back to reference Peixoto-Santos JE, Kandratavicius L, Velasco TR et al (2017) Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia 58:149–159PubMedCrossRef Peixoto-Santos JE, Kandratavicius L, Velasco TR et al (2017) Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia 58:149–159PubMedCrossRef
26.
go back to reference Garbelli R, Zucca I, Milesi G et al (2011) Combined 7-T MRI and histopathologic study of normal and dysplastic samples from patients with TLE. Neurology 76:1177–1185PubMedCrossRef Garbelli R, Zucca I, Milesi G et al (2011) Combined 7-T MRI and histopathologic study of normal and dysplastic samples from patients with TLE. Neurology 76:1177–1185PubMedCrossRef
27.
28.
go back to reference Knight MJ, McCann B, Tsivos D, Dillon S, Coulthard E, Kauppinen RA (2016) Quantitative T2 mapping of white matter: applications for ageing and cognitive decline. Phys Med Biol 61:5587–5605PubMedPubMedCentralCrossRef Knight MJ, McCann B, Tsivos D, Dillon S, Coulthard E, Kauppinen RA (2016) Quantitative T2 mapping of white matter: applications for ageing and cognitive decline. Phys Med Biol 61:5587–5605PubMedPubMedCentralCrossRef
29.
go back to reference Guo K, Cui B, Shang K et al (2021) Assessment of localization accuracy and postsurgical prediction of simultaneous (18)F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 31:6974–6982PubMedCrossRef Guo K, Cui B, Shang K et al (2021) Assessment of localization accuracy and postsurgical prediction of simultaneous (18)F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 31:6974–6982PubMedCrossRef
30.
go back to reference Koesters T, Friedman KP, Fenchel M et al (2016) Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med 57:918–924PubMedCrossRef Koesters T, Friedman KP, Fenchel M et al (2016) Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med 57:918–924PubMedCrossRef
31.
go back to reference Winston GP, Vos SB, Burdett JL, Cardoso MJ, Ourselin S, Duncan JS (2017) Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia 58:1645–1652PubMedPubMedCentralCrossRef Winston GP, Vos SB, Burdett JL, Cardoso MJ, Ourselin S, Duncan JS (2017) Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia 58:1645–1652PubMedPubMedCentralCrossRef
32.
go back to reference Presotto L, Ballarini T, Caminiti SP, Bettinardi V, Gianolli L, Perani D (2017) Validation of (18)F-FDG-PET single-subject optimized SPM procedure with different PET scanners. Neuroinformatics 15:151–163PubMedCrossRef Presotto L, Ballarini T, Caminiti SP, Bettinardi V, Gianolli L, Perani D (2017) Validation of (18)F-FDG-PET single-subject optimized SPM procedure with different PET scanners. Neuroinformatics 15:151–163PubMedCrossRef
33.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
34.
35.
go back to reference Reddy SD, Younus I, Sridhar V, Reddy DS (2019) Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy. Int J Mol Sci 20 Reddy SD, Younus I, Sridhar V, Reddy DS (2019) Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy. Int J Mol Sci 20
36.
go back to reference Zhang L, Guo Y, Hu H, Wang J, Liu Z, Gao F (2015) FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy. Int J Med Sci 12:288–294PubMedPubMedCentralCrossRef Zhang L, Guo Y, Hu H, Wang J, Liu Z, Gao F (2015) FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy. Int J Med Sci 12:288–294PubMedPubMedCentralCrossRef
37.
go back to reference Lee EM, Park GY, Im KC et al (2012) Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Epilepsia 53:860–869PubMedCrossRef Lee EM, Park GY, Im KC et al (2012) Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Epilepsia 53:860–869PubMedCrossRef
38.
go back to reference Goubran M, Bernhardt BC, Cantor-Rivera D et al (2016) In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp 37:1103–1119PubMedCrossRef Goubran M, Bernhardt BC, Cantor-Rivera D et al (2016) In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp 37:1103–1119PubMedCrossRef
39.
go back to reference Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43PubMedCrossRef Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43PubMedCrossRef
40.
go back to reference Bauer CM, Jara H, Killiany R (2010) Whole brain quantitative T2 MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging. Neuroimage 52:508–514PubMedCrossRef Bauer CM, Jara H, Killiany R (2010) Whole brain quantitative T2 MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging. Neuroimage 52:508–514PubMedCrossRef
41.
go back to reference Coan AC, Kubota B, Bergo FP, Campos BM, Cendes F (2014) 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol 35:77–83PubMedPubMedCentralCrossRef Coan AC, Kubota B, Bergo FP, Campos BM, Cendes F (2014) 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol 35:77–83PubMedPubMedCentralCrossRef
42.
go back to reference Nugent S, Tremblay S, Chen KW et al (2014) Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 35:1386–1395PubMedCrossRef Nugent S, Tremblay S, Chen KW et al (2014) Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 35:1386–1395PubMedCrossRef
43.
go back to reference London K, Howman-Giles R (2015) Voxel-based analysis of normal cerebral [18F]FDG uptake during childhood using statistical parametric mapping. Neuroimage 106:264–271PubMedCrossRef London K, Howman-Giles R (2015) Voxel-based analysis of normal cerebral [18F]FDG uptake during childhood using statistical parametric mapping. Neuroimage 106:264–271PubMedCrossRef
44.
go back to reference Bonte S, Vandemaele P, Verleden S et al (2017) Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging 44:838–849PubMedCrossRef Bonte S, Vandemaele P, Verleden S et al (2017) Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging 44:838–849PubMedCrossRef
Metadata
Title
Combined quantitative T2 mapping and [18F]FDG PET could improve lateralization of mesial temporal lobe epilepsy
Authors
Miao Zhang
Hui Huang
Wei Liu
Lihong Tang
Qikang Li
Jia Wang
Xinyun Huang
Xiaozhu Lin
Hongping Meng
Jin Wang
Shikun Zhan
Biao Li
Jie Luo
Publication date
28-03-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08707-5

Other articles of this Issue 9/2022

European Radiology 9/2022 Go to the issue