Skip to main content
Top
Published in: European Radiology 4/2020

Open Access 01-04-2020 | Magnetic Resonance Imaging | Radiological Education

Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI

Authors: Y. Dawood, G. J. Strijkers, J. Limpens, R. J. Oostra, B. S. de Bakker

Published in: European Radiology | Issue 4/2020

Login to get access

Abstract

Background

MRI and CT have been extensively used to study fetal anatomy for research and diagnostic purposes, enabling minimally invasive autopsy and giving insight in human fetal development. Novel (contrast-enhanced) microfocus CT (micro-CT) and ultra-high-field (≥ 7.0 T) MRI (UHF-MRI) techniques now enable micron-level resolution that combats the disadvantages of low-field MRI and conventional CT. Thereby, they might be suitable to study fetal anatomy in high detail and, in time, contribute to the postmortem diagnosis of fetal conditions.

Objectives

(1) To systematically examine the usability of micro-CT and UHF-MRI to study postmortem human fetal anatomy, and (2) to analyze factors that govern success at each step of the specimen preparation and imaging.

Method

MEDLINE and EMBASE were systematically searched to identify publications on fetal imaging by micro-CT or UHF-MRI. Scanning protocols were summarized and best practices concerning specimen preparation and imaging were enumerated.

Results

Thirty-two publications reporting on micro-CT and UHF-MRI were included. The majority of the publications focused on imaging organs separately and seven publications focused on whole body imaging, demonstrating the possibility of visualization of small anatomical structures with a resolution well below 100 μm. When imaging soft tissues by micro-CT, the fetus should be stained by immersion in Lugol’s staining solution.

Conclusion

Micro-CT and UHF-MRI are both excellent imaging techniques to provide detailed images of gross anatomy of human fetuses. The present study offers an overview of the current best practices when using micro-CT and/or UHF-MRI to study fetal anatomy for clinical and research purposes.

Key Points

Micro-CT and UHF-MRI can both be used to study postmortem human fetal anatomy for clinical and research purposes.
Micro-CT enables high-resolution imaging of fetal specimens in relatively short scanning time. However, tissue staining using a contrast solution is necessary to enable soft-tissue visualization.
UHF-MRI enables high-resolution imaging of fetal specimens, without the necessity of prior staining, but with the drawback of long scanning time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wiśniewski M, Baumgart M, Grzonkowska M, Szpinda M, Pawlak-Osińska K (2019) Quantitative anatomy of the ulna’s shaft primary ossification center in the human fetus. Surg Radiol Anat 41:431–439CrossRefPubMed Wiśniewski M, Baumgart M, Grzonkowska M, Szpinda M, Pawlak-Osińska K (2019) Quantitative anatomy of the ulna’s shaft primary ossification center in the human fetus. Surg Radiol Anat 41:431–439CrossRefPubMed
2.
go back to reference Arthurs OJ, Thayyil S, Wade A, Chong WK, Sebire NJ, Taylor AM (2013) Normal ascent of the conus medullaris: a post-mortem foetal MRI study. J Matern Neonatal Med 26:697–702CrossRef Arthurs OJ, Thayyil S, Wade A, Chong WK, Sebire NJ, Taylor AM (2013) Normal ascent of the conus medullaris: a post-mortem foetal MRI study. J Matern Neonatal Med 26:697–702CrossRef
3.
go back to reference Thayyil S, Chitty LS, Robertson NJ, Taylor AM, Sebire NJ (2013) Minimally invasive fetal postmortem examination using magnetic resonance imaging and computerised tomography: current evidence and practical issues. Prenat Diagn 30:713–718CrossRef Thayyil S, Chitty LS, Robertson NJ, Taylor AM, Sebire NJ (2013) Minimally invasive fetal postmortem examination using magnetic resonance imaging and computerised tomography: current evidence and practical issues. Prenat Diagn 30:713–718CrossRef
4.
go back to reference Sandaite I, De Catte L, Moerman P et al (2013) A morphometric study of the human fetal heart on post-mortem 3-tesla magnetic resonance imaging. Prenat Diagn 33:318–327PubMed Sandaite I, De Catte L, Moerman P et al (2013) A morphometric study of the human fetal heart on post-mortem 3-tesla magnetic resonance imaging. Prenat Diagn 33:318–327PubMed
5.
go back to reference Arthurs OJ, Thayyil S, Owens CM et al (2015) Diagnostic accuracy of post mortem MRI for abdominal abnormalities in foetuses and children. Eur J Radiol 84:474–481CrossRefPubMed Arthurs OJ, Thayyil S, Owens CM et al (2015) Diagnostic accuracy of post mortem MRI for abdominal abnormalities in foetuses and children. Eur J Radiol 84:474–481CrossRefPubMed
6.
go back to reference Arthurs OJ, Thayyil S, Olsen OE et al (2014) Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol 24:2876–2884CrossRefPubMedPubMedCentral Arthurs OJ, Thayyil S, Olsen OE et al (2014) Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol 24:2876–2884CrossRefPubMedPubMedCentral
7.
go back to reference Kang X, Cannie MM, Arthurs OJ et al (2017) Post-mortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol 27:3542–3553CrossRefPubMed Kang X, Cannie MM, Arthurs OJ et al (2017) Post-mortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol 27:3542–3553CrossRefPubMed
8.
go back to reference Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336CrossRefPubMed Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336CrossRefPubMed
9.
go back to reference Johnson GA, Calabrese E, Badea A, Paxinos G, Watson C (2012) A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage 62(3):1848–1856CrossRefPubMed Johnson GA, Calabrese E, Badea A, Paxinos G, Watson C (2012) A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage 62(3):1848–1856CrossRefPubMed
10.
go back to reference Metscher BD (2009) MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 238:632–640CrossRefPubMed Metscher BD (2009) MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 238:632–640CrossRefPubMed
11.
go back to reference Hutchinson JC, Shelmerdine SC, Simcock IC, Sebire NJ, Arthurs OJ (2017) Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). Br J Radiol 90:1–10CrossRef Hutchinson JC, Shelmerdine SC, Simcock IC, Sebire NJ, Arthurs OJ (2017) Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). Br J Radiol 90:1–10CrossRef
12.
go back to reference Gignac PM, Kley NJ, Clarke JA et al (2016) Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 228:889–909CrossRefPubMedPubMedCentral Gignac PM, Kley NJ, Clarke JA et al (2016) Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 228:889–909CrossRefPubMedPubMedCentral
13.
go back to reference Lin X, Zhang Z, Teng G et al (2011) Measurements using 7.0T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age. Int J Dev Neurosci 29:885–889CrossRefPubMed Lin X, Zhang Z, Teng G et al (2011) Measurements using 7.0T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age. Int J Dev Neurosci 29:885–889CrossRefPubMed
14.
go back to reference Thayyil S, Cleary JO, Sebire NJ et al (2009) Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9·4 T with conventional MRI and invasive autopsy. Lancet 374:467–475CrossRefPubMed Thayyil S, Cleary JO, Sebire NJ et al (2009) Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9·4 T with conventional MRI and invasive autopsy. Lancet 374:467–475CrossRefPubMed
15.
go back to reference Votino C, Jani J, Verhoye M et al (2012) Postmortem examination of human fetal hearts at or below 20 weeks’ gestation: a comparison of high-field MRI at 9.4 T with lower-field MRI magnets and stereomicroscopic autopsy. Ultrasound Obstet Gynecol 40:437–444CrossRefPubMed Votino C, Jani J, Verhoye M et al (2012) Postmortem examination of human fetal hearts at or below 20 weeks’ gestation: a comparison of high-field MRI at 9.4 T with lower-field MRI magnets and stereomicroscopic autopsy. Ultrasound Obstet Gynecol 40:437–444CrossRefPubMed
16.
go back to reference Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU (2018) Visualizing the human subcortex using ultra-high field magnetic resonance imaging. Brain Topogr 31:513–545 Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU (2018) Visualizing the human subcortex using ultra-high field magnetic resonance imaging. Brain Topogr 31:513–545
17.
go back to reference Hutchinson JC, Kang X, Shelmerdine SC et al (2018) Post mortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy. Am J Obstet Gynecol 218:445CrossRefPubMed Hutchinson JC, Kang X, Shelmerdine SC et al (2018) Post mortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy. Am J Obstet Gynecol 218:445CrossRefPubMed
18.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097 Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097
20.
go back to reference Johnson Chacko L, Wertjanz D, Sergi C et al (2019) Growth and cellular patterning during fetal human inner ear development studied by a correlative imaging approach. BMC Dev Biol 19:1–14CrossRef Johnson Chacko L, Wertjanz D, Sergi C et al (2019) Growth and cellular patterning during fetal human inner ear development studied by a correlative imaging approach. BMC Dev Biol 19:1–14CrossRef
21.
go back to reference Katsube M, Yamada S, Yamaguchi Y et al (2019) Critical growth processes for the midfacial morphogenesis in the early prenatal period. Cleft Palate Craniofac J 56:1026–1037CrossRefPubMed Katsube M, Yamada S, Yamaguchi Y et al (2019) Critical growth processes for the midfacial morphogenesis in the early prenatal period. Cleft Palate Craniofac J 56:1026–1037CrossRefPubMed
22.
go back to reference Shibata T, Matsumoto S, Agishi T, Nagano T (2009) Visualization of Reissner membrane and the spiral ganglion in human fetal cochlea by micro-computed tomography. Am J Otolaryngol 30:112–120CrossRefPubMed Shibata T, Matsumoto S, Agishi T, Nagano T (2009) Visualization of Reissner membrane and the spiral ganglion in human fetal cochlea by micro-computed tomography. Am J Otolaryngol 30:112–120CrossRefPubMed
24.
go back to reference Shibata T, Matsumoto S, Nagano T, Sasaki H (2006) Micro-focus X-ray computed tomography images of the 3D structure of the cranium of a fetus with asymmetric double malformation. Congenit Anom (Kyoto) 46:10–15CrossRef Shibata T, Matsumoto S, Nagano T, Sasaki H (2006) Micro-focus X-ray computed tomography images of the 3D structure of the cranium of a fetus with asymmetric double malformation. Congenit Anom (Kyoto) 46:10–15CrossRef
25.
go back to reference Mccoll DJ, Abel RL, Spears IM, Macho GA (2006) Automated method to measure trabecular thickness from microcomputed tomographic scans and its application. Anat Rec A Discov Mol Cell Evol Biol 288:982–988CrossRefPubMed Mccoll DJ, Abel RL, Spears IM, Macho GA (2006) Automated method to measure trabecular thickness from microcomputed tomographic scans and its application. Anat Rec A Discov Mol Cell Evol Biol 288:982–988CrossRefPubMed
26.
go back to reference Kramer B, Molema K, Hutchinson EF (2019) An osteological assessment of cyclopia by micro-CT scanning. Surg Radiol Anat 41:1053–1063CrossRefPubMed Kramer B, Molema K, Hutchinson EF (2019) An osteological assessment of cyclopia by micro-CT scanning. Surg Radiol Anat 41:1053–1063CrossRefPubMed
27.
go back to reference Schanandore JV (2018) Using micro computed tomography to investigate a fetal mummy with possible situs inversus: a case report. Am J Hum Biol 30:1–3CrossRef Schanandore JV (2018) Using micro computed tomography to investigate a fetal mummy with possible situs inversus: a case report. Am J Hum Biol 30:1–3CrossRef
28.
go back to reference Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L (2017) Inner ear ossification and mineralization kinetics in human embryonic development-microtomographic and histomorphological study. Sci Rep 7:1–11CrossRef Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L (2017) Inner ear ossification and mineralization kinetics in human embryonic development-microtomographic and histomorphological study. Sci Rep 7:1–11CrossRef
29.
go back to reference Hutchinson EF, Florentino G, Hoffman J, Kramer B (2017) Micro-CT assessment of changes in the morphology and position of the immature mandibular canal during early growth. Surg Radiol Anat 39:185–194CrossRefPubMed Hutchinson EF, Florentino G, Hoffman J, Kramer B (2017) Micro-CT assessment of changes in the morphology and position of the immature mandibular canal during early growth. Surg Radiol Anat 39:185–194CrossRefPubMed
30.
go back to reference Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL (2015) Early trabecular development in human vertebrae: overproduction, constructive regression, and refinement. Front Endocrinol (Lausanne) 6:1–9CrossRef Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL (2015) Early trabecular development in human vertebrae: overproduction, constructive regression, and refinement. Front Endocrinol (Lausanne) 6:1–9CrossRef
31.
go back to reference Skadorwa T, Maslanka M, Ciszek B (2015) The morphology and morphometry of the fetal fallopian canal: a microtomographic study. Surg Radiol Anat 37:677–684CrossRefPubMed Skadorwa T, Maslanka M, Ciszek B (2015) The morphology and morphometry of the fetal fallopian canal: a microtomographic study. Surg Radiol Anat 37:677–684CrossRefPubMed
32.
go back to reference Dumic-Cule I, Eljuga D, Izadpanah A et al (2014) Dynamics of optic canal and orbital cavity development revealed by microCT. Surg Radiol Anat 36:989–992CrossRefPubMed Dumic-Cule I, Eljuga D, Izadpanah A et al (2014) Dynamics of optic canal and orbital cavity development revealed by microCT. Surg Radiol Anat 36:989–992CrossRefPubMed
34.
go back to reference Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA (2010) Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging 3:314–322CrossRefPubMedPubMedCentral Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA (2010) Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging 3:314–322CrossRefPubMedPubMedCentral
35.
go back to reference Spaw A, Witmer L (2013) Fetal developmental anatomy of the human cardiovascular and central nervous systems using lugol’s iodine staining and micro-computed tomography. FASEB J 28:923 Spaw A, Witmer L (2013) Fetal developmental anatomy of the human cardiovascular and central nervous systems using lugol’s iodine staining and micro-computed tomography. FASEB J 28:923
36.
go back to reference Hutchinson JC, Arthurs OJ, Ashworth MT et al (2016) Clinical utility of postmortem microcomputed tomography of the fetal heart: diagnostic imaging vs macroscopic dissection. Ultrasound Obstet Gynecol 47:58–64CrossRefPubMed Hutchinson JC, Arthurs OJ, Ashworth MT et al (2016) Clinical utility of postmortem microcomputed tomography of the fetal heart: diagnostic imaging vs macroscopic dissection. Ultrasound Obstet Gynecol 47:58–64CrossRefPubMed
37.
go back to reference Zhang Z, Liu S, Lin X et al (2011) Development of laminar organization of the fetal cerebrum at 3.0T and 7.0T: a postmortem MRI study. Neuroradiology 53:177–184CrossRefPubMed Zhang Z, Liu S, Lin X et al (2011) Development of laminar organization of the fetal cerebrum at 3.0T and 7.0T: a postmortem MRI study. Neuroradiology 53:177–184CrossRefPubMed
38.
go back to reference Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37CrossRefPubMed Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37CrossRefPubMed
39.
go back to reference Huang H, Jeon T, Sedmak G et al (2013) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631CrossRefPubMed Huang H, Jeon T, Sedmak G et al (2013) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631CrossRefPubMed
40.
go back to reference Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273CrossRefPubMedPubMedCentral Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273CrossRefPubMedPubMedCentral
41.
go back to reference Krsnik Ž, Majić V, Vasung L, Huang H, Kostović I (2017) Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci 11:223CrossRef Krsnik Ž, Majić V, Vasung L, Huang H, Kostović I (2017) Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci 11:223CrossRef
42.
go back to reference Ishikawa A, Ohtsuki S, Yamada S et al (2018) Formation of the periotic space during the early fetal period in humans. Anat Rec (Hoboken) 301:563–570 Ishikawa A, Ohtsuki S, Yamada S et al (2018) Formation of the periotic space during the early fetal period in humans. Anat Rec (Hoboken) 301:563–570
43.
go back to reference Toyoda S, Shiraki N, Yamada S et al (2015) Morphogenesis of the inner ear at different stages of normal human development. Anat Rec (Hoboken) 298:2081–2090 Toyoda S, Shiraki N, Yamada S et al (2015) Morphogenesis of the inner ear at different stages of normal human development. Anat Rec (Hoboken) 298:2081–2090
44.
go back to reference Votino C, Verhoye M, Segers V et al (2012) Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks’ gestation. Ultrasound Obstet Gynecol 39:673–678CrossRefPubMed Votino C, Verhoye M, Segers V et al (2012) Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks’ gestation. Ultrasound Obstet Gynecol 39:673–678CrossRefPubMed
45.
go back to reference Verhoye M, Votino C, Cannie MM et al (2013) Post-mortem high-field magnetic resonance imaging: effect or various factors. J Matern Fetal Neonatal Med 26:1060–1065CrossRefPubMed Verhoye M, Votino C, Cannie MM et al (2013) Post-mortem high-field magnetic resonance imaging: effect or various factors. J Matern Fetal Neonatal Med 26:1060–1065CrossRefPubMed
46.
47.
go back to reference Metscher BD (2009) Micro CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11CrossRefPubMedPubMedCentral Metscher BD (2009) Micro CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11CrossRefPubMedPubMedCentral
48.
49.
go back to reference Li Z, Clarke JA, Ketcham RA, Colbert MW, Yan F (2015) An investigation of the efficacy and mechanism of contrast-enhanced X-ray computed tomography utilizing iodine for large specimens through experimental and simulation approaches. BMC Physiol 15:1–16CrossRef Li Z, Clarke JA, Ketcham RA, Colbert MW, Yan F (2015) An investigation of the efficacy and mechanism of contrast-enhanced X-ray computed tomography utilizing iodine for large specimens through experimental and simulation approaches. BMC Physiol 15:1–16CrossRef
50.
go back to reference Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn, New York Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn, New York
51.
go back to reference Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592CrossRefPubMed Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592CrossRefPubMed
52.
go back to reference Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed
53.
go back to reference Counter SA, Damberg P, Aski SN, Nagy K, Engmér C, Laurell G (2015) Experimental fusion of contrast enhanced high-field magnetic resonance imaging and high-resolution micro-computed tomography in imaging the mouse. Open Neuroimag J 9:7–12 Counter SA, Damberg P, Aski SN, Nagy K, Engmér C, Laurell G (2015) Experimental fusion of contrast enhanced high-field magnetic resonance imaging and high-resolution micro-computed tomography in imaging the mouse. Open Neuroimag J 9:7–12
54.
go back to reference Sandrini C, Rossetti L, Zambelli V et al (2019) Accuracy of micro-computed tomography in post-mortem evaluation of fetal congenital heart disease. Comparison Between Post-mortem Micro-CT and Conventional Autopsy. Front Pediatr 7:1–8CrossRef Sandrini C, Rossetti L, Zambelli V et al (2019) Accuracy of micro-computed tomography in post-mortem evaluation of fetal congenital heart disease. Comparison Between Post-mortem Micro-CT and Conventional Autopsy. Front Pediatr 7:1–8CrossRef
55.
go back to reference Katsube M, Rolfe SM, Bortolussi SR et al (2019) Analysis of facial skeletal asymmetry during foetal development using μCT imaging. Orthod Craniofac Res 22:199–206CrossRefPubMedPubMedCentral Katsube M, Rolfe SM, Bortolussi SR et al (2019) Analysis of facial skeletal asymmetry during foetal development using μCT imaging. Orthod Craniofac Res 22:199–206CrossRefPubMedPubMedCentral
56.
go back to reference Lombardi S, Scola E, Ippolito D et al (2019) Micro-computed tomography: a new diagnostic tool in postmortem assessment of brain anatomy in small fetuses. Neuroradiology 61(7):737–746CrossRefPubMed Lombardi S, Scola E, Ippolito D et al (2019) Micro-computed tomography: a new diagnostic tool in postmortem assessment of brain anatomy in small fetuses. Neuroradiology 61(7):737–746CrossRefPubMed
57.
go back to reference Meignan P, Binet A, Cook AR, Lardy H, Captier G (2018) Fetal median sacral artery anatomy study by micro-CT imaging. Surg Radiol Anat 40:735–741CrossRefPubMed Meignan P, Binet A, Cook AR, Lardy H, Captier G (2018) Fetal median sacral artery anatomy study by micro-CT imaging. Surg Radiol Anat 40:735–741CrossRefPubMed
58.
go back to reference Wu J, Yin N (2016) Detailed anatomy of the nasolabial muscle in human fetuses as determined by micro-CT combined with iodine staining. Ann Plast Surg 76:111–116CrossRefPubMed Wu J, Yin N (2016) Detailed anatomy of the nasolabial muscle in human fetuses as determined by micro-CT combined with iodine staining. Ann Plast Surg 76:111–116CrossRefPubMed
59.
go back to reference Lombardi CM, Zambelli V, Botta G et al (2014) Postmortem microcomputed tomography (micro-CT) of small fetuses and hearts. Ultrasound Obstet Gynecol 445:600–609CrossRef Lombardi CM, Zambelli V, Botta G et al (2014) Postmortem microcomputed tomography (micro-CT) of small fetuses and hearts. Ultrasound Obstet Gynecol 445:600–609CrossRef
60.
go back to reference Zhang Z, Lin X, Yu Q et al (2019) Fetal ocular development in the second trimester of pregnancy documented by 7.0 T postmortem Magnetic Resonance Imaging. PLoS One 14:1–9 Zhang Z, Lin X, Yu Q et al (2019) Fetal ocular development in the second trimester of pregnancy documented by 7.0 T postmortem Magnetic Resonance Imaging. PLoS One 14:1–9
61.
go back to reference Staicu A, Albu C, Popa-Stanila R et al (2019) Potential clinical benefits and limitations of fetal virtopsy using high-field MRI at 7 Tesla versus stereomicroscopic autopsy to assess first trimester fetuses. Prenat Diagn 39:505–518PubMed Staicu A, Albu C, Popa-Stanila R et al (2019) Potential clinical benefits and limitations of fetal virtopsy using high-field MRI at 7 Tesla versus stereomicroscopic autopsy to assess first trimester fetuses. Prenat Diagn 39:505–518PubMed
62.
go back to reference Maricic N, Khaveh N, Marheinecke C et al (2019) The Hinrichsen embryology collection: digitization of historical histological human embryonic slides and MRI of whole fetuses. Cells Tissues Organs 207:1–14CrossRefPubMed Maricic N, Khaveh N, Marheinecke C et al (2019) The Hinrichsen embryology collection: digitization of historical histological human embryonic slides and MRI of whole fetuses. Cells Tissues Organs 207:1–14CrossRefPubMed
63.
go back to reference Vulturar D, Farcasanu A, Turcu F, Boitor D, Crivii C (2018) The volume of the cerebellum in the second semester of gestation. Clujul Med 91:176–180PubMedPubMedCentral Vulturar D, Farcasanu A, Turcu F, Boitor D, Crivii C (2018) The volume of the cerebellum in the second semester of gestation. Clujul Med 91:176–180PubMedPubMedCentral
64.
go back to reference Zhang H, Zhang Z, Yin X et al (2016) Early development of the fetal central sulcus on 7.0T magnetic resonance imaging. Int J Dev Neurosci 48:18–23CrossRefPubMed Zhang H, Zhang Z, Yin X et al (2016) Early development of the fetal central sulcus on 7.0T magnetic resonance imaging. Int J Dev Neurosci 48:18–23CrossRefPubMed
65.
66.
go back to reference Ge X, Shi Y, Li J et al (2015) Development of the human fetal hippocampal formation during early second trimester. Neuroimage 119:33–43CrossRefPubMed Ge X, Shi Y, Li J et al (2015) Development of the human fetal hippocampal formation during early second trimester. Neuroimage 119:33–43CrossRefPubMed
67.
go back to reference Milesi G, Garbelli R, Zucca I, Aronica E, Spreafico R, Frassoni C (2014) Assessment of human hippocampal developmental neuroanatomy by means of ex-vivo 7T magnetic resonance imaging. Int J Dev Neurosci 34:33–41CrossRefPubMed Milesi G, Garbelli R, Zucca I, Aronica E, Spreafico R, Frassoni C (2014) Assessment of human hippocampal developmental neuroanatomy by means of ex-vivo 7T magnetic resonance imaging. Int J Dev Neurosci 34:33–41CrossRefPubMed
68.
go back to reference Zhan J, Dinov ID, Li J et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. Neuroimage 82:115–126CrossRefPubMed Zhan J, Dinov ID, Li J et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. Neuroimage 82:115–126CrossRefPubMed
Metadata
Title
Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI
Authors
Y. Dawood
G. J. Strijkers
J. Limpens
R. J. Oostra
B. S. de Bakker
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 4/2020
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06543-8

Other articles of this Issue 4/2020

European Radiology 4/2020 Go to the issue