Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 4/2019

Open Access 01-04-2019 | Original Article

Quantitative anatomy of the ulna’s shaft primary ossification center in the human fetus

Authors: Marcin Wiśniewski, Mariusz Baumgart, Magdalena Grzonkowska, Michał Szpinda, Katarzyna Pawlak-Osińska

Published in: Surgical and Radiologic Anatomy | Issue 4/2019

Login to get access

Abstract

Purpose

There has been little information in the medical literature regarding the growing ulna in the human fetus, though such knowledge appears to be potentially useful in diagnosing skeletal dysplasias, characterized by a disrupted or completely halted growth of the fetus. Therefore, longitudinal measurements of long bones are extremely conducive in assessing both pregnancy and fetal anatomy.

Materials and methods

Using methods of CT, digital-image analysis and statistics, the size of the ulna’s shaft primary ossification center in 48 (26 males and 22 females) spontaneously aborted human fetuses aged 17–30 weeks was studied.

Results

With no sex differences, the best fit growth dynamics for the ulna’s shaft primary ossification center was modeled by the following functions: y = − 8.476 + 1.561 × age ± 0.019 for its length, y = − 2.961 + 0.278 × age ± 0.016 for its proximal transverse diameter, y = – 0.587 + 0.107 × age ± 0.027 for its middle transverse diameter, y = − 2.865 + 0.226 × age ± 0.295 for its distal transverse diameter, y = − 50.758 + 0.251 × (age)2 ± 0.016 for its projection surface area, and y = − 821.707 + 52.578 × age ± 0.018 ± 102.944 for its volume.

Conclusions

The morphometric characteristics of the ulna’s shaft primary ossification center show neither sex nor bilateral differences. The ulna’s shaft primary ossification center grows linearly with respect to its length, transverse dimensions and volume, and follows a quadratic function with respect to its projection surface area. The obtained morphometric data of the ulna’s shaft primary ossification center is considered normative for respective prenatal weeks and may be of relevance in both the estimation of fetal ages and the diagnostic process of congenital defects.
Literature
1.
go back to reference Amin RS, Nikolaidis P, Kawashima A, Kramer LA, Ernst RD (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:201–214CrossRef Amin RS, Nikolaidis P, Kawashima A, Kramer LA, Ernst RD (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:201–214CrossRef
2.
go back to reference Bareggi R, Grill V, Zweyer M, Sandrucci MA, Narducci P, Forabosco V (1994) The growth of long bones in human embryological and fetal upper limbs and its relationship to other developmental patterns. Anat Embryol 189:19–24CrossRefPubMed Bareggi R, Grill V, Zweyer M, Sandrucci MA, Narducci P, Forabosco V (1994) The growth of long bones in human embryological and fetal upper limbs and its relationship to other developmental patterns. Anat Embryol 189:19–24CrossRefPubMed
3.
go back to reference Baumgart M, Wiśniewski M, Grzonkowska M, Badura M, Dombek M, Małkowski B, Szpinda M (2016) Morphometric study of the two fused primary ossification centers of the clavicle in the human fetus. Surg Radiol Anat 38(8):937–945CrossRefPubMedPubMedCentral Baumgart M, Wiśniewski M, Grzonkowska M, Badura M, Dombek M, Małkowski B, Szpinda M (2016) Morphometric study of the two fused primary ossification centers of the clavicle in the human fetus. Surg Radiol Anat 38(8):937–945CrossRefPubMedPubMedCentral
4.
go back to reference Bober MB, Taylor M, Heinle R, Mackenzie W (2012) Achondroplasia-hypochondroplasia complex and abnormal pulmonary anatomy. Am J Med Genet 158:2336–2341CrossRef Bober MB, Taylor M, Heinle R, Mackenzie W (2012) Achondroplasia-hypochondroplasia complex and abnormal pulmonary anatomy. Am J Med Genet 158:2336–2341CrossRef
5.
go back to reference Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundos S, Nishimura G, Sangiorgi L, Savarirayan R, Sillence D, Spranger J, Superti-Furga A, Warman M, Unger S (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167(12):2869–2892CrossRef Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundos S, Nishimura G, Sangiorgi L, Savarirayan R, Sillence D, Spranger J, Superti-Furga A, Warman M, Unger S (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167(12):2869–2892CrossRef
6.
go back to reference Brons JTJ, van Geijn HP, Bezemer PD, Nauta JPJ, Arts NFT (1990) The fetal skeleton; ultrasonographic evaluation of the normal growth. Eur J Obstet Gynecol Reprod Biol 34:21–36CrossRefPubMed Brons JTJ, van Geijn HP, Bezemer PD, Nauta JPJ, Arts NFT (1990) The fetal skeleton; ultrasonographic evaluation of the normal growth. Eur J Obstet Gynecol Reprod Biol 34:21–36CrossRefPubMed
7.
go back to reference Cassart M, Massez A, Cos T, Tecco L, Thomas D, Van Regemorter N, Avni F (2007) Contribution of three-dimensional computed tomography in the assessment of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 29:537–543CrossRefPubMed Cassart M, Massez A, Cos T, Tecco L, Thomas D, Van Regemorter N, Avni F (2007) Contribution of three-dimensional computed tomography in the assessment of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 29:537–543CrossRefPubMed
8.
go back to reference Chano T, Matsumoto K, Ishizawa M, Morimoto S, Hukuda S, Okabe H, Kato H, Fujino S (1996) Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem 40:189–198PubMed Chano T, Matsumoto K, Ishizawa M, Morimoto S, Hukuda S, Okabe H, Kato H, Fujino S (1996) Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem 40:189–198PubMed
9.
go back to reference Chinn DH, Bolding DB, Callen PW, Gross BH, Filly RA (1983) Ultrasonographic identification of fetal lower extremity epiphyseal ossification centers. Radiology 147(3):815–881CrossRefPubMed Chinn DH, Bolding DB, Callen PW, Gross BH, Filly RA (1983) Ultrasonographic identification of fetal lower extremity epiphyseal ossification centers. Radiology 147(3):815–881CrossRefPubMed
10.
go back to reference Chitty LS, Altman DG (2002) Charts of fetal size: limb bones. BJOG Int J Obst Gynaecol 109:919–929CrossRef Chitty LS, Altman DG (2002) Charts of fetal size: limb bones. BJOG Int J Obst Gynaecol 109:919–929CrossRef
12.
go back to reference Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI: a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252CrossRefPubMed Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI: a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252CrossRefPubMed
13.
go back to reference Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S (2003) S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res 18:493–501CrossRefPubMed Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S (2003) S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res 18:493–501CrossRefPubMed
14.
go back to reference Exacoustos C, Rosati P, Rizzo G, Arduini D (1991) Ultrasound measurement of fetal limb bones. Ultrasound Obset Gynecol 1(5):323–330 Exacoustos C, Rosati P, Rizzo G, Arduini D (1991) Ultrasound measurement of fetal limb bones. Ultrasound Obset Gynecol 1(5):323–330
15.
16.
go back to reference Lee S, Kim T, Lee H, Park J, Chung S, Jeon D (2013) Length measurement of fetal long bone and fetal anomaly detection. Obstet Gynaecol 4(5):WMC004230 Lee S, Kim T, Lee H, Park J, Chung S, Jeon D (2013) Length measurement of fetal long bone and fetal anomaly detection. Obstet Gynaecol 4(5):WMC004230
17.
go back to reference Macé G, Sonigo P, Cormier-Daire V, Aubry MC, Martinovic J, Elie C, Gonzales M, Carbonne B, Dumzes Y, Le Merrier M, Brunelle F, Benachi A (2013) Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 42(2):161–168CrossRefPubMed Macé G, Sonigo P, Cormier-Daire V, Aubry MC, Martinovic J, Elie C, Gonzales M, Carbonne B, Dumzes Y, Le Merrier M, Brunelle F, Benachi A (2013) Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 42(2):161–168CrossRefPubMed
18.
go back to reference McCollough CH, Schueler BA, Atwell TD, Braun NN, Regner DM, Brown DL, LeRoy AJ (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27(4):909–918CrossRefPubMed McCollough CH, Schueler BA, Atwell TD, Braun NN, Regner DM, Brown DL, LeRoy AJ (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27(4):909–918CrossRefPubMed
19.
go back to reference Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15(4):995–1004CrossRefPubMed Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15(4):995–1004CrossRefPubMed
20.
go back to reference Victoria T, Shakir NU, Andronikou S, Edgar JC, Germaine P, Epelman M, Johnson AM, Jaramillo D (2016) Normal fetal long bone length from computed tomography: potential value in the prenatal evaluation of skeletal dysplasias. Fetal Diagn Ther 40:291–297CrossRefPubMed Victoria T, Shakir NU, Andronikou S, Edgar JC, Germaine P, Epelman M, Johnson AM, Jaramillo D (2016) Normal fetal long bone length from computed tomography: potential value in the prenatal evaluation of skeletal dysplasias. Fetal Diagn Ther 40:291–297CrossRefPubMed
21.
go back to reference Wiśniewski M, Baumgart M, Grzonkowska M, Małkowski B, Wilińska-Jankowska A, Siedlecki Z, Szpinda M (2017) Ossification center of the humeral shaft in the human fetus: a CT, digital, and statistical study. Surg Radiol Anat 39(10):1107–1116CrossRefPubMedPubMedCentral Wiśniewski M, Baumgart M, Grzonkowska M, Małkowski B, Wilińska-Jankowska A, Siedlecki Z, Szpinda M (2017) Ossification center of the humeral shaft in the human fetus: a CT, digital, and statistical study. Surg Radiol Anat 39(10):1107–1116CrossRefPubMedPubMedCentral
22.
go back to reference Zoetis T, Tassinari MS, Bagi C, Walthall K, Hurtt ME (2003) Species comparison of postnatal bone growth and development. Birth Defects Res B 68:86–110CrossRef Zoetis T, Tassinari MS, Bagi C, Walthall K, Hurtt ME (2003) Species comparison of postnatal bone growth and development. Birth Defects Res B 68:86–110CrossRef
23.
go back to reference Zorzoli A, Kustermann A, Caravelli E, Corso FE, Fogliani R, Aimi G, Nicolini U (1994) Measurements of fetal limb bones in early pregnancy. Ultrasound Obset Gynecol 4:29–33CrossRef Zorzoli A, Kustermann A, Caravelli E, Corso FE, Fogliani R, Aimi G, Nicolini U (1994) Measurements of fetal limb bones in early pregnancy. Ultrasound Obset Gynecol 4:29–33CrossRef
Metadata
Title
Quantitative anatomy of the ulna’s shaft primary ossification center in the human fetus
Authors
Marcin Wiśniewski
Mariusz Baumgart
Magdalena Grzonkowska
Michał Szpinda
Katarzyna Pawlak-Osińska
Publication date
01-04-2019
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 4/2019
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-018-2121-2

Other articles of this Issue 4/2019

Surgical and Radiologic Anatomy 4/2019 Go to the issue