Skip to main content
Top
Published in: European Radiology 9/2018

01-09-2018 | Interventional

Monitoring neurointerventional radiation doses using dose-tracking software: implications for the establishment of local diagnostic reference levels

Authors: Holly Acton, Karl James, Richard G. Kavanagh, Colm O’Tuathaigh, Deirdre Moloney, Gerald Wyse, Noel Fanning, Michael Maher, Owen J. O’Connor

Published in: European Radiology | Issue 9/2018

Login to get access

Abstract

Objectives

There is potential for high radiation exposure during neurointerventional procedures. Increasing regulatory requirements mandate dose monitoring of patients and staff, and justification of high levels of radiation exposure. This paper demonstrates the potential to use radiation dose-tracking software to establish local diagnostic reference levels.

Methods

Consecutive neurointerventional procedures, performed in a single institution within a one-year period, were retrospectively studied. Dose area product (DAP) data were collected using dose-tracking software and clinical data obtained from a prospectively generated patient treatment database.

Results

Two hundred and sixty-four procedures met the selection criteria. Median DAP was 100 Gy.cm2 for aneurysm coiling procedures, 259 Gy.cm2 for arteriovenous malformation (AVM) embolisation procedures, 87 Gy.cm2 for stroke thrombolysis/thrombectomy, and 74 Gy.cm2 for four-vessel angiography. One hundred and nine aneurysm coiling procedures were further studied. Six significant variables were assessed using stepwise regression analysis to determine effect on DAP. Aneurysm location (anterior vs posterior circulation) had the single biggest effect (p = 0.004).

Conclusions

This paper confirms variable radiation exposures during neurointerventional procedures. The 75th percentile (used to define diagnostic reference levels) of DAP measurements represents a reasonable guidance metric for monitoring purposes. Results indicate that aneurysm location has the greatest impact on dose during coiling procedures and that anterior and posterior circulation coiling procedures should have separate diagnostic reference levels.

Key Points

Dose-tracking software is useful for monitoring patient radiation dose during neurointerventional procedures
This paper provides a template for methodology applicable to any interventional suite
Local diagnostic reference levels were defined by using the 75th percentile of DAP as per International Commission on Radiological Protection recommendations
Aneurysm location is the biggest determinant of radiation dose during coiling procedures.
Anterior and posterior circulation coiling procedures should have separate diagnostic reference levels.
Literature
1.
go back to reference Lin N, Cahill KS, Frerichs KU, Friedlander RM, Claus EB (2012) Treatment of ruptured and unruptured cerebral aneurysms in the USA: a paradigm shift. J Neurointerv Surg 4:182–189CrossRefPubMed Lin N, Cahill KS, Frerichs KU, Friedlander RM, Claus EB (2012) Treatment of ruptured and unruptured cerebral aneurysms in the USA: a paradigm shift. J Neurointerv Surg 4:182–189CrossRefPubMed
2.
go back to reference Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vano E (2010) Clinical radiation management for fluoroscopically guided interventional procedures. Radiology 257:321–332CrossRefPubMed Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vano E (2010) Clinical radiation management for fluoroscopically guided interventional procedures. Radiology 257:321–332CrossRefPubMed
3.
go back to reference Stecker MS, Balter S, Towbin RB et al (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol 20:S263–S273CrossRefPubMed Stecker MS, Balter S, Towbin RB et al (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol 20:S263–S273CrossRefPubMed
4.
go back to reference Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study: part II: skin dose. J Vasc Interv Radiol 14:977–990CrossRefPubMed Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study: part II: skin dose. J Vasc Interv Radiol 14:977–990CrossRefPubMed
5.
go back to reference Authors on behalf of ICRP, Stewart FA, Akleyev AV et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:1–322 Authors on behalf of ICRP, Stewart FA, Akleyev AV et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:1–322
7.
go back to reference Broughton J, Cantone MC, Ginjaume M, Shah B, Czarwinski R (2015) Implications in dosimetry of the implementation of the revised dose limit to the lens of the eye. Radiat Prot Dosimetry 164:70–74CrossRefPubMed Broughton J, Cantone MC, Ginjaume M, Shah B, Czarwinski R (2015) Implications in dosimetry of the implementation of the revised dose limit to the lens of the eye. Radiat Prot Dosimetry 164:70–74CrossRefPubMed
8.
go back to reference Seals KF, Lee EW, Cagnon CH, Al-Hakim RA, Kee ST (2016) Radiation-induced cataractogenesis: a critical literature review for the interventional radiologist. Cardiovasc Intervent Radiol 39:151–160CrossRefPubMed Seals KF, Lee EW, Cagnon CH, Al-Hakim RA, Kee ST (2016) Radiation-induced cataractogenesis: a critical literature review for the interventional radiologist. Cardiovasc Intervent Radiol 39:151–160CrossRefPubMed
9.
go back to reference Kirova G, Georgiev E, Zasheva C, St Georges A (2015) Dose tracking and radiology department management. Radiat Prot Dosimetry 165:62–66CrossRefPubMed Kirova G, Georgiev E, Zasheva C, St Georges A (2015) Dose tracking and radiology department management. Radiat Prot Dosimetry 165:62–66CrossRefPubMed
10.
go back to reference Alexander MD, Oliff MC, Olorunsola OG, Brus-Ramer M, Nickoloff EL, Meyers PM (2010) Patient radiation exposure during diagnostic and therapeutic interventional neuroradiology procedures. J Neurointerv Surg 2:6–10CrossRefPubMed Alexander MD, Oliff MC, Olorunsola OG, Brus-Ramer M, Nickoloff EL, Meyers PM (2010) Patient radiation exposure during diagnostic and therapeutic interventional neuroradiology procedures. J Neurointerv Surg 2:6–10CrossRefPubMed
11.
go back to reference Rehani MM, Frush DP, Berris T, Einstein AJ (2012) Patient radiation exposure tracking: worldwide programs and needs—results from the first IAEA survey. Eur J Radiol 81:e968–e976CrossRefPubMedPubMedCentral Rehani MM, Frush DP, Berris T, Einstein AJ (2012) Patient radiation exposure tracking: worldwide programs and needs—results from the first IAEA survey. Eur J Radiol 81:e968–e976CrossRefPubMedPubMedCentral
12.
go back to reference Kemerink GJ, Frantzen MJ, Oei K et al (2002) Patient and occupational dose in neurointerventional procedures. Neuroradiology 44:522–528CrossRefPubMed Kemerink GJ, Frantzen MJ, Oei K et al (2002) Patient and occupational dose in neurointerventional procedures. Neuroradiology 44:522–528CrossRefPubMed
13.
go back to reference Bor D, Cekirge S, Turkay T et al (2005) Patient and staff doses in interventional neuroradiology. Radiat Prot Dosimetry 117:62–68CrossRefPubMed Bor D, Cekirge S, Turkay T et al (2005) Patient and staff doses in interventional neuroradiology. Radiat Prot Dosimetry 117:62–68CrossRefPubMed
14.
go back to reference Sanchez RM, Vano E, Fernandez JM, Moreu M, Lopez-Ibor L (2014) Brain radiation doses to patients in an interventional neuroradiology laboratory. AJNR Am J Neuroradiol 35:1276–1280CrossRefPubMed Sanchez RM, Vano E, Fernandez JM, Moreu M, Lopez-Ibor L (2014) Brain radiation doses to patients in an interventional neuroradiology laboratory. AJNR Am J Neuroradiol 35:1276–1280CrossRefPubMed
15.
go back to reference Faulkner K, Christofides S, Lillicrap S, Horton P, Malone J (2012) Criteria for the acceptability of radiological equipment. Radiation protection no. 162. European Union, Luxembourg Faulkner K, Christofides S, Lillicrap S, Horton P, Malone J (2012) Criteria for the acceptability of radiological equipment. Radiation protection no. 162. European Union, Luxembourg
16.
go back to reference Balter S, Miller D, Vano E et al (2008) A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures. Med Phys 35:673–680CrossRefPubMed Balter S, Miller D, Vano E et al (2008) A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures. Med Phys 35:673–680CrossRefPubMed
17.
go back to reference Balter S, Rosenstein M, Miller DL, Schueler B, Spelic D (2011) Patient radiation dose audits for fluoroscopically guided interventional procedures. Med Phys 38:1611–1618CrossRefPubMedCentral Balter S, Rosenstein M, Miller DL, Schueler B, Spelic D (2011) Patient radiation dose audits for fluoroscopically guided interventional procedures. Med Phys 38:1611–1618CrossRefPubMedCentral
18.
go back to reference ICRP (2017) Diagnostic reference levels in medical imaging. ICRP Publication 135. Ann ICRP 46(1) ICRP (2017) Diagnostic reference levels in medical imaging. ICRP Publication 135. Ann ICRP 46(1)
19.
go back to reference Aroua A, Rickli H, Stauffer JC et al (2007) How to set up and apply reference levels in fluoroscopy at a national level. Eur Radiol 17:1621–1633CrossRefPubMed Aroua A, Rickli H, Stauffer JC et al (2007) How to set up and apply reference levels in fluoroscopy at a national level. Eur Radiol 17:1621–1633CrossRefPubMed
20.
go back to reference Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol 14:711–727CrossRefPubMed Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol 14:711–727CrossRefPubMed
22.
go back to reference Kwon D, Little MP, Miller DL (2011) Reference air kerma and kerma-area product as estimators of peak skin dose for fluoroscopically guided interventions. Med Phys 38:4196–4204CrossRefPubMedPubMedCentral Kwon D, Little MP, Miller DL (2011) Reference air kerma and kerma-area product as estimators of peak skin dose for fluoroscopically guided interventions. Med Phys 38:4196–4204CrossRefPubMedPubMedCentral
24.
go back to reference Berman MF, Sciacca RR, Pile-Spellman J et al (2000) The epidemiology of brain arteriovenous malformations. Neurosurgery 47:389–396 discussion 397CrossRefPubMed Berman MF, Sciacca RR, Pile-Spellman J et al (2000) The epidemiology of brain arteriovenous malformations. Neurosurgery 47:389–396 discussion 397CrossRefPubMed
25.
go back to reference Villablanca JP, Achiriolaie A, Hooshi P et al (2005) Aneurysms of the posterior circulation: detection and treatment planning using volume-rendered three-dimensional helical computerized tomography angiography. J Neurosurg 103:1018–1029CrossRefPubMed Villablanca JP, Achiriolaie A, Hooshi P et al (2005) Aneurysms of the posterior circulation: detection and treatment planning using volume-rendered three-dimensional helical computerized tomography angiography. J Neurosurg 103:1018–1029CrossRefPubMed
26.
go back to reference Villablanca JP, Duckwiler GR, Jahan R et al (2013) Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology 269:258–265CrossRefPubMed Villablanca JP, Duckwiler GR, Jahan R et al (2013) Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology 269:258–265CrossRefPubMed
27.
go back to reference Schievink WI, Wijdicks EF, Piepgras DG, Chu CP, O'Fallon WM, Whisnant JP (1995) The poor prognosis of ruptured intracranial aneurysms of the posterior circulation. J Neurosurg 82:791–795CrossRefPubMed Schievink WI, Wijdicks EF, Piepgras DG, Chu CP, O'Fallon WM, Whisnant JP (1995) The poor prognosis of ruptured intracranial aneurysms of the posterior circulation. J Neurosurg 82:791–795CrossRefPubMed
28.
go back to reference Fischer S, Vajda Z, Aguilar Perez M et al (2012) Pipeline embolization device (PED) for neurovascular reconstruction: initial experience in the treatment of 101 intracranial aneurysms and dissections. Neuroradiology 54:369–382CrossRefPubMed Fischer S, Vajda Z, Aguilar Perez M et al (2012) Pipeline embolization device (PED) for neurovascular reconstruction: initial experience in the treatment of 101 intracranial aneurysms and dissections. Neuroradiology 54:369–382CrossRefPubMed
30.
go back to reference Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE (2011) Skin dose mapping for fluoroscopically guided interventions. Med Phys 38:5490–5499CrossRefPubMedPubMedCentral Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE (2011) Skin dose mapping for fluoroscopically guided interventions. Med Phys 38:5490–5499CrossRefPubMedPubMedCentral
Metadata
Title
Monitoring neurointerventional radiation doses using dose-tracking software: implications for the establishment of local diagnostic reference levels
Authors
Holly Acton
Karl James
Richard G. Kavanagh
Colm O’Tuathaigh
Deirdre Moloney
Gerald Wyse
Noel Fanning
Michael Maher
Owen J. O’Connor
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5405-3

Other articles of this Issue 9/2018

European Radiology 9/2018 Go to the issue