Skip to main content
Top
Published in: European Radiology 6/2018

01-06-2018 | Neuro

Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis

Authors: Chong Hyun Suh, Ho Sung Kim, Seung Chai Jung, Choong Gon Choi, Sang Joon Kim

Published in: European Radiology | Issue 6/2018

Login to get access

Abstract

Objective

To evaluate the value of multiparametric MRI for determination of early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma.

Methods

A computerized search of Ovid-MEDLINE and EMBASE up to 1 October 2017 was performed to find studies on the diagnostic performance of multiparametric MRI for differentiating true progression from pseudoprogression. The beginning search date was not specified. Pooled estimates of sensitivity and specificity were obtained using hierarchical logistic regression modeling. We performed meta-regression and sensitivity analyses to explain the effects of the study heterogeneity.

Results

Nine studies including 456 patients were included. Pooled sensitivity and specificity were 84 % (95 % CI 74–91) and 95 % (95 % CI 83–99), respectively. Area under the hierarchical summary receiver operating characteristic curve was 0.95 (95 % CI 0.92–0.96). Meta-regression showed true progression in the study population, the mean age and the reference standard were significant factors affecting heterogeneity.

Conclusion

Multiparametric MRI may be used as a potential surrogate endpoint for assessment of early treatment response, especially in the differentiation of true progression from pseudoprogression. However, based on the current evidence, monoparametric and multiparametric MRI perform equally in the clinical context. Further evaluation will be needed.

Key Points

Multiparametric MRI shows high diagnostic performance for early treatment response in glioblastoma.
Multiparametric MRI could differentiate true progression from pseudoprogression in newly diagnosed glioblastoma.
The normalized rCBV derived from DSC was the most commonly used parameter.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbasi AW, Westerlaan HE, Holtman GA, Aden KM, van Laar PJ, van der Hoorn A (2017) Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol Abbasi AW, Westerlaan HE, Holtman GA, Aden KM, van Laar PJ, van der Hoorn A (2017) Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol
2.
go back to reference Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197CrossRefPubMed Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197CrossRefPubMed
3.
go back to reference Stuplich M, Hadizadeh DR, Kuchelmeister K et al (2012) Late and prolonged pseudoprogression in glioblastoma after treatment with lomustine and temozolomide. J Clin Oncol 30:e180–e183CrossRefPubMed Stuplich M, Hadizadeh DR, Kuchelmeister K et al (2012) Late and prolonged pseudoprogression in glioblastoma after treatment with lomustine and temozolomide. J Clin Oncol 30:e180–e183CrossRefPubMed
4.
go back to reference Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed
5.
go back to reference van Dijken BR, van Laar PJ, Holtman GA, van der Hoorn A (2017) Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol van Dijken BR, van Laar PJ, Holtman GA, van der Hoorn A (2017) Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol
6.
go back to reference Cha J, Kim ST, Kim HJ et al (2014) Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol 35:1309–1317CrossRefPubMed Cha J, Kim ST, Kim HJ et al (2014) Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol 35:1309–1317CrossRefPubMed
7.
go back to reference Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 54:448–454CrossRefPubMed Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 54:448–454CrossRefPubMed
8.
go back to reference Di Costanzo A, Scarabino T, Trojsi F et al (2014) Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 119:616–624CrossRefPubMed Di Costanzo A, Scarabino T, Trojsi F et al (2014) Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 119:616–624CrossRefPubMed
9.
go back to reference Hu X, Wong KK, Young GS, Guo L, Wong ST (2011) Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 33:296–305CrossRefPubMedPubMedCentral Hu X, Wong KK, Young GS, Guo L, Wong ST (2011) Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 33:296–305CrossRefPubMedPubMedCentral
10.
go back to reference Park JE, Kim HS, Goh MJ, Kim SJ, Kim JH (2015) Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology 275:792–802CrossRefPubMed Park JE, Kim HS, Goh MJ, Kim SJ, Kim JH (2015) Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology 275:792–802CrossRefPubMed
11.
go back to reference Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ (2015) Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 36:877–885CrossRefPubMedPubMedCentral Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ (2015) Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 36:877–885CrossRefPubMedPubMedCentral
12.
go back to reference Seeger A, Braun C, Skardelly M et al (2013) Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 20:1557–1565CrossRefPubMed Seeger A, Braun C, Skardelly M et al (2013) Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 20:1557–1565CrossRefPubMed
13.
go back to reference Wang S, Martinez-Lage M, Sakai Y et al (2016) Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol 37:28–36CrossRefPubMed Wang S, Martinez-Lage M, Sakai Y et al (2016) Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol 37:28–36CrossRefPubMed
14.
go back to reference Yoo RE, Choi SH, Kim TM et al (2015) Independent poor prognostic factors for true progression after radiation therapy and concomitant temozolomide in patients with glioblastoma: subependymal enhancement and low ADC value. AJNR Am J Neuroradiol 36:1846–1852CrossRefPubMed Yoo RE, Choi SH, Kim TM et al (2015) Independent poor prognostic factors for true progression after radiation therapy and concomitant temozolomide in patients with glioblastoma: subependymal enhancement and low ADC value. AJNR Am J Neuroradiol 36:1846–1852CrossRefPubMed
15.
go back to reference Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94CrossRefPubMed Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94CrossRefPubMed
16.
go back to reference Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefPubMed Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefPubMed
18.
19.
go back to reference Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6CrossRefPubMedPubMedCentral Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6CrossRefPubMedPubMedCentral
20.
go back to reference Kim KW, Lee J, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. general guidance and tips. Korean J Radiol 16:1175–1187CrossRefPubMedPubMedCentral Kim KW, Lee J, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. general guidance and tips. Korean J Radiol 16:1175–1187CrossRefPubMedPubMedCentral
21.
go back to reference Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part II. Statistical methods of meta-analysis. Korean J Radiol 16:1188–1196CrossRefPubMedPubMedCentral Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part II. Statistical methods of meta-analysis. Korean J Radiol 16:1188–1196CrossRefPubMedPubMedCentral
22.
go back to reference Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893CrossRefPubMed Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893CrossRefPubMed
23.
go back to reference Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985CrossRefPubMed Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985CrossRefPubMed
24.
go back to reference Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed
25.
go back to reference Hyare H, Thust S, Rees J (2017) Advanced MRI techniques in the monitoring of treatment of gliomas. Curr Treat Options Neurol 19:11CrossRefPubMed Hyare H, Thust S, Rees J (2017) Advanced MRI techniques in the monitoring of treatment of gliomas. Curr Treat Options Neurol 19:11CrossRefPubMed
27.
go back to reference Trikalinos TA, Balion CM, Coleman CI et al (2012) Chapter 8: meta-analysis of test performance when there is a ‘gold standard’. J Gen Intern Med 27(Suppl 1):S56–S66CrossRefPubMed Trikalinos TA, Balion CM, Coleman CI et al (2012) Chapter 8: meta-analysis of test performance when there is a ‘gold standard’. J Gen Intern Med 27(Suppl 1):S56–S66CrossRefPubMed
Metadata
Title
Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis
Authors
Chong Hyun Suh
Ho Sung Kim
Seung Chai Jung
Choong Gon Choi
Sang Joon Kim
Publication date
01-06-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-5262-5

Other articles of this Issue 6/2018

European Radiology 6/2018 Go to the issue