Skip to main content
Top
Published in: Current Treatment Options in Neurology 3/2017

01-03-2017 | Neuro-oncology (R Soffietti, Section Editor)

Advanced MRI Techniques in the Monitoring of Treatment of Gliomas

Authors: Harpreet Hyare, BSc, MBBS, MRCP, PhD, FRCR, Steffi Thust, MD, FRCR, Jeremy Rees, BSc, MBBS, PhD, FRCP

Published in: Current Treatment Options in Neurology | Issue 3/2017

Login to get access

Opinion statement

With advances in treatments and survival of patients with glioblastoma (GBM), it has become apparent that conventional imaging sequences have significant limitations both in terms of assessing response to treatment and monitoring disease progression. Both ‘pseudoprogression’ after chemoradiation for newly diagnosed GBM and ‘pseudoresponse’ after anti-angiogenesis treatment for relapsed GBM are well-recognised radiological entities. This in turn has led to revision of response criteria away from the standard MacDonald criteria, which depend on the two-dimensional measurement of contrast-enhancing tumour, and which have been the primary measure of radiological response for over three decades. A working party of experts published RANO (Response Assessment in Neuro-oncology Working Group) criteria in 2010 which take into account signal change on T2/FLAIR sequences as well as the contrast-enhancing component of the tumour. These have recently been modified for immune therapies, which are associated with specific issues related to the timing of radiological response. There has been increasing interest in quantification and validation of physiological and metabolic parameters in GBM over the last 10 years utilising the wide range of advanced imaging techniques available on standard MRI platforms. Previously, MRI would provide structural information only on the anatomical location of the tumour and the presence or absence of a disrupted blood-brain barrier. Advanced MRI sequences include proton magnetic resonance spectroscopy (MRS), vascular imaging (perfusion/permeability) and diffusion imaging (diffusion weighted imaging/diffusion tensor imaging) and are now routinely available. They provide biologically relevant functional, haemodynamic, cellular, metabolic and cytoarchitectural information and are being evaluated in clinical trials to determine whether they offer superior biomarkers of early treatment response than conventional imaging, when correlated with hard survival endpoints. Multiparametric imaging, incorporating different combinations of these modalities, improves accuracy over single imaging modalities but has not been widely adopted due to the amount of post-processing analysis required, lack of clinical trial data, lack of radiology training and wide variations in threshold values. New techniques including diffusion kurtosis and radiomics will offer a higher level of quantification but will require validation in clinical trial settings. Given all these considerations, it is clear that there is an urgent need to incorporate advanced techniques into clinical trial design to avoid the problems of under or over assessment of treatment response.
Literature
1.
go back to reference Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed
2.
go back to reference deSouza RM, Shaweis H, Han C, et al. Has the survival of patients with glioblastoma changed over the years? Br J Cancer. 2016;114:146–50.CrossRefPubMed deSouza RM, Shaweis H, Han C, et al. Has the survival of patients with glioblastoma changed over the years? Br J Cancer. 2016;114:146–50.CrossRefPubMed
3.
go back to reference Metellus P, Coulibaly B, Colin C, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29.CrossRefPubMed Metellus P, Coulibaly B, Colin C, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29.CrossRefPubMed
4.
go back to reference Reuter M, Gerstner ER, Rapalino O, Batchelor TT, Rosen B, Fischl B. Impact of MRI head placement on glioma response assessment. J Neurooncol. 2014;118:123–9.CrossRefPubMedPubMedCentral Reuter M, Gerstner ER, Rapalino O, Batchelor TT, Rosen B, Fischl B. Impact of MRI head placement on glioma response assessment. J Neurooncol. 2014;118:123–9.CrossRefPubMedPubMedCentral
5.
go back to reference •• Ellingson BM, Bendzhus M, Boxerman J, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17:1188–98. This recently published paper is the first to provide international consensus recommendations for glioma imaging in clinical trials, highlighting a need for standardisation that may also be relevant to clinical practice.CrossRefPubMedPubMedCentral •• Ellingson BM, Bendzhus M, Boxerman J, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17:1188–98. This recently published paper is the first to provide international consensus recommendations for glioma imaging in clinical trials, highlighting a need for standardisation that may also be relevant to clinical practice.CrossRefPubMedPubMedCentral
6.
go back to reference Young RJ, Gupta A, Shah AD, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.CrossRefPubMedPubMedCentral Young RJ, Gupta A, Shah AD, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.CrossRefPubMedPubMedCentral
7.
go back to reference Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol. 2013;15:515–34.CrossRefPubMedPubMedCentral Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol. 2013;15:515–34.CrossRefPubMedPubMedCentral
8.
go back to reference Radbruch A, Fladt J, Kickingereder P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 2015;17:151–9.CrossRefPubMed Radbruch A, Fladt J, Kickingereder P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 2015;17:151–9.CrossRefPubMed
9.
go back to reference de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63:535–37.CrossRefPubMed de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63:535–37.CrossRefPubMed
10.
go back to reference Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–97.CrossRefPubMed Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–97.CrossRefPubMed
11.
go back to reference Da Cruz H, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32:1978–85.CrossRef Da Cruz H, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32:1978–85.CrossRef
12.
go back to reference Gerstner ER, McNamara MB, Norden AD, Lafrankie D, Wen PY. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. 2009;94:97–101.CrossRefPubMed Gerstner ER, McNamara MB, Norden AD, Lafrankie D, Wen PY. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. 2009;94:97–101.CrossRefPubMed
13.
go back to reference van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol. 2016. pii: now194. van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol. 2016. pii: now194.
14.
go back to reference Batchelor T, Sorensen A, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.CrossRefPubMedPubMedCentral Batchelor T, Sorensen A, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.CrossRefPubMedPubMedCentral
15.
go back to reference Vredenburgh JJ, Desjardins A, Herndon 2nd JE, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–29.CrossRefPubMed Vredenburgh JJ, Desjardins A, Herndon 2nd JE, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–29.CrossRefPubMed
16.
go back to reference Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70:779–87.CrossRefPubMed Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70:779–87.CrossRefPubMed
17.
go back to reference Narayana A, Kelly P, Golfinos J, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg. 2009;110:173–80.CrossRefPubMed Narayana A, Kelly P, Golfinos J, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg. 2009;110:173–80.CrossRefPubMed
18.
go back to reference Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology working group. J Clin Oncol. 2010;28:1963–72.CrossRefPubMed Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology working group. J Clin Oncol. 2010;28:1963–72.CrossRefPubMed
19.
go back to reference Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.CrossRefPubMed Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.CrossRefPubMed
20.
go back to reference Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology. 2009;252:182–9.CrossRefPubMed Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology. 2009;252:182–9.CrossRefPubMed
21.
go back to reference Bulik M, Kazda T, Slampa P, Jancalek R. The diagnostic ability of follow-up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping. Biomed Res Int. 2015;2015:641023.CrossRefPubMedPubMedCentral Bulik M, Kazda T, Slampa P, Jancalek R. The diagnostic ability of follow-up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping. Biomed Res Int. 2015;2015:641023.CrossRefPubMedPubMedCentral
22.
go back to reference Boxerman JL, Ellingson BM, Jeyapalan S, Elinzano H, Harris RJ, Rogg JM, Pope WB, Safran H. Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol 2014. Boxerman JL, Ellingson BM, Jeyapalan S, Elinzano H, Harris RJ, Rogg JM, Pope WB, Safran H. Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol 2014.
23.
go back to reference Jaspan T, Morgan PS, Warmuth-Metz M, et al. Response assessment in pediatric neuro-oncology: implementation and expansion of the RANO criteria in a randomized phase II trial of pediatric patients with newly diagnosed high-grade gliomas. AJNR Am J Neuroradiol. 2016;37:1581–87.CrossRefPubMed Jaspan T, Morgan PS, Warmuth-Metz M, et al. Response assessment in pediatric neuro-oncology: implementation and expansion of the RANO criteria in a randomized phase II trial of pediatric patients with newly diagnosed high-grade gliomas. AJNR Am J Neuroradiol. 2016;37:1581–87.CrossRefPubMed
24.
go back to reference Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42.CrossRefPubMedPubMedCentral Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42.CrossRefPubMedPubMedCentral
25.
go back to reference Simon D, Fritzsche KH, Thieke C, et al. Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas. Cancer Imaging. 2012;12:89–99.CrossRefPubMedPubMedCentral Simon D, Fritzsche KH, Thieke C, et al. Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas. Cancer Imaging. 2012;12:89–99.CrossRefPubMedPubMedCentral
26.
go back to reference LaViolette PS, Mickevicius NJ, Cochran EJ, et al. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro Oncol. 2014;16:1599–606.CrossRefPubMedPubMedCentral LaViolette PS, Mickevicius NJ, Cochran EJ, et al. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro Oncol. 2014;16:1599–606.CrossRefPubMedPubMedCentral
27.
go back to reference Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high- grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.PubMed Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high- grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.PubMed
28.
go back to reference Asao C, Korogi Y, Kitajima M, et al. Diffusion- weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMed Asao C, Korogi Y, Kitajima M, et al. Diffusion- weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMed
29.
go back to reference Lee WJ, Choi SH, Park CK, et al. Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol. 2012;19:1353–61.CrossRefPubMed Lee WJ, Choi SH, Park CK, et al. Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol. 2012;19:1353–61.CrossRefPubMed
30.
go back to reference Song YS, Choi SH, Park CK, et al. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol. 2013;14:662–72.CrossRefPubMedPubMedCentral Song YS, Choi SH, Park CK, et al. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol. 2013;14:662–72.CrossRefPubMedPubMedCentral
31.
go back to reference • Chu HH, Choi SH, Ryoo I, et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 2013;269:831–40. This study examines the value of diffusion imaging to distinguish pseudoprogression from tumour, highlighting the potential benefit of high b value imaging and histogram analysis.CrossRefPubMed • Chu HH, Choi SH, Ryoo I, et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 2013;269:831–40. This study examines the value of diffusion imaging to distinguish pseudoprogression from tumour, highlighting the potential benefit of high b value imaging and histogram analysis.CrossRefPubMed
32.
go back to reference Sundgren PC, Fan X, Weybright P, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24:1131–42.CrossRefPubMed Sundgren PC, Fan X, Weybright P, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24:1131–42.CrossRefPubMed
33.
go back to reference Jiang R, Jiang J, Zhao L, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget. 2015;6(39):42380–93.PubMedPubMedCentral Jiang R, Jiang J, Zhao L, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget. 2015;6(39):42380–93.PubMedPubMedCentral
34.
go back to reference • Barajas Jr RF, Butowski NA, Phillips JJ, et al. The development of reduced diffusion following bevacizumab therapy identifies regions of recurrent disease in patients with high-grade glioma. Acad Radiol. 2016;23:1073–82. This research identified viable tumour corresponding to regions of low ADC signal following anti-angiogenic therapy by means of histological correlation.CrossRefPubMed • Barajas Jr RF, Butowski NA, Phillips JJ, et al. The development of reduced diffusion following bevacizumab therapy identifies regions of recurrent disease in patients with high-grade glioma. Acad Radiol. 2016;23:1073–82. This research identified viable tumour corresponding to regions of low ADC signal following anti-angiogenic therapy by means of histological correlation.CrossRefPubMed
35.
go back to reference Nguyen HS, Milbach N, Hurrell SL, Cochran E, Connelly J, Bovi A et al. Progressing bevacizumab-induced diffusion restriction is associated with coagulative necrosis surrounded by viable tumor and decreased overall survival in patients with recurrent glioblastoma. AJNR Am J Neuroradiol. 2016. Nguyen HS, Milbach N, Hurrell SL, Cochran E, Connelly J, Bovi A et al. Progressing bevacizumab-induced diffusion restriction is associated with coagulative necrosis surrounded by viable tumor and decreased overall survival in patients with recurrent glioblastoma. AJNR Am J Neuroradiol. 2016.
36.
go back to reference Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.PubMed Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.PubMed
37.
go back to reference Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19:527–57.CrossRefPubMed Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19:527–57.CrossRefPubMed
38.
go back to reference Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247:170–8.CrossRefPubMed Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247:170–8.CrossRefPubMed
39.
go back to reference Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh 4th GR. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol. 2004;25:214–21.PubMed Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh 4th GR. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol. 2004;25:214–21.PubMed
40.
go back to reference Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.PubMed Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.PubMed
41.
go back to reference Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.CrossRefPubMed Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.CrossRefPubMed
42.
go back to reference Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology. 2009;250:887–96.CrossRefPubMed Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology. 2009;250:887–96.CrossRefPubMed
43.
go back to reference Fatterpekar GM, Galheigho D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 2012;198:19–26.CrossRefPubMed Fatterpekar GM, Galheigho D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 2012;198:19–26.CrossRefPubMed
44.
go back to reference •• Patel P, Baradaran H, Delgado D, Askin G, Christos P, Tsiouris AJ, Gupta A. MRI perfusion imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol. 2016. This systematic meta-analysis confirms the benefit of DSC to distinguish pseudoprogression from recurrent tumour, but highlights the problem of defining a widely applicable threshold value. •• Patel P, Baradaran H, Delgado D, Askin G, Christos P, Tsiouris AJ, Gupta A. MRI perfusion imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol. 2016. This systematic meta-analysis confirms the benefit of DSC to distinguish pseudoprogression from recurrent tumour, but highlights the problem of defining a widely applicable threshold value.
45.
go back to reference Kelm ZS, Korfiatis PD, Lingineni RK, Daniels JR, Buckner JC, Lachane DH et al. Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham). 2015; 2: 026001 Kelm ZS, Korfiatis PD, Lingineni RK, Daniels JR, Buckner JC, Lachane DH et al. Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham). 2015; 2: 026001
46.
go back to reference Wang S, Martinez-Lage M, Sakai Y, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol. 2016;37:28–36.CrossRefPubMed Wang S, Martinez-Lage M, Sakai Y, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol. 2016;37:28–36.CrossRefPubMed
47.
go back to reference Choi SH, Jung SC, Kim KW, et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J Neurooncol. 2016;128:185–94.CrossRefPubMed Choi SH, Jung SC, Kim KW, et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J Neurooncol. 2016;128:185–94.CrossRefPubMed
48.
go back to reference Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;121:373–80.CrossRefPubMed Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;121:373–80.CrossRefPubMed
49.
go back to reference Thomas AA, Arevalo-Perez J, Kaley T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol. 2015;125:183–90.CrossRefPubMedPubMedCentral Thomas AA, Arevalo-Perez J, Kaley T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol. 2015;125:183–90.CrossRefPubMedPubMedCentral
50.
go back to reference Bisdas S, Naegele T, Ritz R, et al. Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18:575–83.CrossRefPubMed Bisdas S, Naegele T, Ritz R, et al. Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18:575–83.CrossRefPubMed
51.
go back to reference •• Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2015 Oct 15. This meta-analysis suggests that MRS can contribute to glioma assessment, however, the study raises doubts regarding the accuracy of the technique when used in isolation. •• Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2015 Oct 15. This meta-analysis suggests that MRS can contribute to glioma assessment, however, the study raises doubts regarding the accuracy of the technique when used in isolation.
52.
go back to reference Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increased the diagnostic accuracy of recurrent glioblastoma: single institution thresholds and validation of MR spectroscopy. Neuroimage Clin. 2016;11:316–21.CrossRefPubMedPubMedCentral Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increased the diagnostic accuracy of recurrent glioblastoma: single institution thresholds and validation of MR spectroscopy. Neuroimage Clin. 2016;11:316–21.CrossRefPubMedPubMedCentral
53.
go back to reference Quon H, Brunet B, Alexander A, et al. Changes in serial magnetic resonance spectroscopy predict outcome in high-grade glioma during and after postoperative radiotherapy. Anticancer Res. 2011;31:3559–65.PubMed Quon H, Brunet B, Alexander A, et al. Changes in serial magnetic resonance spectroscopy predict outcome in high-grade glioma during and after postoperative radiotherapy. Anticancer Res. 2011;31:3559–65.PubMed
54.
go back to reference Tolia M, Verganelakis D, Tsoukalas N, Kyrgias G, Papathanasiou M, Mosa E. Prognostic value of MRS metabolites in postoperative irradiated high grade gliomas. Biomed Res Int. 2015;2015:341042.PubMedPubMedCentral Tolia M, Verganelakis D, Tsoukalas N, Kyrgias G, Papathanasiou M, Mosa E. Prognostic value of MRS metabolites in postoperative irradiated high grade gliomas. Biomed Res Int. 2015;2015:341042.PubMedPubMedCentral
55.
go back to reference Zhang H, Ma L, Wang Q, Zheng X, Wu C, Xu BN. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol. 2014;83:2181–9.CrossRefPubMed Zhang H, Ma L, Wang Q, Zheng X, Wu C, Xu BN. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol. 2014;83:2181–9.CrossRefPubMed
56.
go back to reference Matsusue EI, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology. 2010;52:297–306.CrossRefPubMed Matsusue EI, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology. 2010;52:297–306.CrossRefPubMed
57.
go back to reference Akbari H, Macyszyn L, Da X, et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery. 2016;78:572–80.CrossRefPubMedPubMedCentral Akbari H, Macyszyn L, Da X, et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery. 2016;78:572–80.CrossRefPubMedPubMedCentral
58.
go back to reference Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23:836.CrossRefPubMed Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23:836.CrossRefPubMed
59.
go back to reference Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012;263:492–501.CrossRefPubMed Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012;263:492–501.CrossRefPubMed
60.
go back to reference Raab P, Hattingen E, Frank K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254:876–81.CrossRefPubMed Raab P, Hattingen E, Frank K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254:876–81.CrossRefPubMed
61.
go back to reference Hempel JM, Bisdas S, Schittenhelm J, Brendle C, Bender B, Wassmann H et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging. J Neurooncol. 2016. Hempel JM, Bisdas S, Schittenhelm J, Brendle C, Bender B, Wassmann H et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging. J Neurooncol. 2016.
62.
go back to reference Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014;74:1902–12.CrossRefPubMed Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014;74:1902–12.CrossRefPubMed
63.
go back to reference Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol. 2014;16(3):441–8.CrossRefPubMed Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol. 2014;16(3):441–8.CrossRefPubMed
64.
go back to reference • Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130–34. Description of a novel MRI technique, amide proton transfer MRI, showing the ability to clearly differentiate gliomas and radiation necrosis in animal models.CrossRefPubMed • Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130–34. Description of a novel MRI technique, amide proton transfer MRI, showing the ability to clearly differentiate gliomas and radiation necrosis in animal models.CrossRefPubMed
65.
go back to reference Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 2015;17:1514–24.CrossRefPubMedPubMedCentral Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 2015;17:1514–24.CrossRefPubMedPubMedCentral
66.
go back to reference Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hanriharan H et al. Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Mol Imaging Biol 2016. Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hanriharan H et al. Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Mol Imaging Biol 2016.
67.
go back to reference Xu X, Yadav NN, Knutsson L, et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography. 2015;1:105–14.CrossRefPubMedPubMedCentral Xu X, Yadav NN, Knutsson L, et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography. 2015;1:105–14.CrossRefPubMedPubMedCentral
68.
go back to reference Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med. 2011;66:505–19.CrossRefPubMed Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med. 2011;66:505–19.CrossRefPubMed
69.
go back to reference Chaumeil MM, Ozawa T, Park I, et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2012;59:193–201.CrossRefPubMed Chaumeil MM, Ozawa T, Park I, et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2012;59:193–201.CrossRefPubMed
70.
go back to reference Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12:133–44.CrossRefPubMedPubMedCentral Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12:133–44.CrossRefPubMedPubMedCentral
71.
go back to reference Bai HX, Lee AM, Yang L, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89:20151030.CrossRefPubMed Bai HX, Lee AM, Yang L, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89:20151030.CrossRefPubMed
72.
go back to reference • Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi institutional study of the TCGA glioblastoma data set. Radiology. 2013;267:560–9. Radiological analysis using the VASARI criteria on a large glioblastoma dataset showing high levels of inter-rater agreement of macroscopic imaging features, and correlating them with genetic expression and gene subtypes.CrossRefPubMedPubMedCentral • Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi institutional study of the TCGA glioblastoma data set. Radiology. 2013;267:560–9. Radiological analysis using the VASARI criteria on a large glioblastoma dataset showing high levels of inter-rater agreement of macroscopic imaging features, and correlating them with genetic expression and gene subtypes.CrossRefPubMedPubMedCentral
73.
go back to reference Gevaert O, Mitchell LA, Achrol AS, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014;273:168–74.CrossRefPubMedPubMedCentral Gevaert O, Mitchell LA, Achrol AS, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014;273:168–74.CrossRefPubMedPubMedCentral
74.
go back to reference Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology. 2014;270:1–2.CrossRefPubMed Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology. 2014;270:1–2.CrossRefPubMed
75.
go back to reference Lee J, Narang S, Martinez J, Rao G, Rao A. Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS One. 2015;10:e0136557.CrossRefPubMedPubMedCentral Lee J, Narang S, Martinez J, Rao G, Rao A. Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS One. 2015;10:e0136557.CrossRefPubMedPubMedCentral
76.
go back to reference Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-derived MRI texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys. 2015;42:6725–35.CrossRefPubMedPubMedCentral Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-derived MRI texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys. 2015;42:6725–35.CrossRefPubMedPubMedCentral
77.
go back to reference Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. AJNR Am J Neuroradiol. 2016. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. AJNR Am J Neuroradiol. 2016.
78.
go back to reference Carter T, Shaw H, Cohn-Brown D, Chester K, Mulholland P. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol). 2016;28:622–26.CrossRef Carter T, Shaw H, Cohn-Brown D, Chester K, Mulholland P. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol). 2016;28:622–26.CrossRef
Metadata
Title
Advanced MRI Techniques in the Monitoring of Treatment of Gliomas
Authors
Harpreet Hyare, BSc, MBBS, MRCP, PhD, FRCR
Steffi Thust, MD, FRCR
Jeremy Rees, BSc, MBBS, PhD, FRCP
Publication date
01-03-2017
Publisher
Springer US
Published in
Current Treatment Options in Neurology / Issue 3/2017
Print ISSN: 1092-8480
Electronic ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-017-0445-6