Skip to main content
Top
Published in: European Radiology 5/2017

01-05-2017 | Urogenital

Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study

Authors: Olivier Rouvière, Christelle Melodelima, Au Hoang Dinh, Flavie Bratan, Gaele Pagnoux, Thomas Sanzalone, Sébastien Crouzet, Marc Colombel, Florence Mège-Lechevallier, Rémi Souchon

Published in: European Radiology | Issue 5/2017

Login to get access

Abstract

Objectives

To measure benign and malignant prostate tissue stiffness using shear-wave elastography (SWE).

Methods

Thirty consecutive patients underwent transrectal SWE in the axial and sagittal planes before prostatectomy. After reviewing prostatectomy specimens, two radiologists measured stiffness in regions corresponding to cancers, lateral and median benign peripheral zone (PZ) and benign transition zone (TZ).

Results

Cancers were stiffer than benign PZ and TZ. All tissue classes were stiffer on sagittal than on axial imaging, in TZ than in PZ, and in median PZ than in lateral PZ. At multivariate analysis, the nature of tissue (benign or malignant; P < 0.00001), the imaging plane (axial or sagittal; P < 0.00001) and the location within the prostate (TZ, median PZ or lateral PZ; P = 0.0065) significantly and independently influenced tissue stiffness. On axial images, the thresholds maximising the Youden index in TZ, lateral PZ and median PZ were respectively 62 kPa, 33 kPa and 49 kPa. On sagittal images, the thresholds were 76 kPa, 50 kPa and 72 kPa, respectively.

Conclusions

SWE can distinguish prostate malignant and benign tissues. Tissue stiffness is influenced by the imaging plane and the location within the gland.

Key Points

Prostate cancers were stiffer than the benign peripheral zone
All tissue classes were stiffer on sagittal than on axial imaging
All tissue classes were stiffer in the transition zone than in the peripheral zone
All tissue classes were stiffer in the median than in the lateral peripheral zone
Taking into account imaging plane and zonal anatomy can improve cancer detection
Literature
2.
go back to reference Rubin R (2015) Researchers look to MRI and biomarkers to help improve detection of aggressive prostate cancers. JAMA 313:654–656CrossRefPubMed Rubin R (2015) Researchers look to MRI and biomarkers to help improve detection of aggressive prostate cancers. JAMA 313:654–656CrossRefPubMed
3.
go back to reference Bratan F, Niaf E, Melodelima C et al (2013) Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 23:2019–2029CrossRefPubMed Bratan F, Niaf E, Melodelima C et al (2013) Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 23:2019–2029CrossRefPubMed
4.
go back to reference Valerio M, Donaldson I, Emberton M et al (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68:8–19CrossRefPubMed Valerio M, Donaldson I, Emberton M et al (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68:8–19CrossRefPubMed
5.
go back to reference Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG (2015) Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68:438–450CrossRefPubMed Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG (2015) Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68:438–450CrossRefPubMed
6.
go back to reference Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824CrossRefPubMed Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824CrossRefPubMed
7.
go back to reference van Hove A, Savoie PH, Maurin C et al (2014) Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J Urol 32:847–858CrossRefPubMed van Hove A, Savoie PH, Maurin C et al (2014) Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J Urol 32:847–858CrossRefPubMed
8.
go back to reference Postema A, Mischi M, de la Rosette J, Wijkstra H (2015) Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol 33:1651–1659CrossRefPubMedPubMedCentral Postema A, Mischi M, de la Rosette J, Wijkstra H (2015) Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol 33:1651–1659CrossRefPubMedPubMedCentral
9.
go back to reference Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409CrossRefPubMed Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409CrossRefPubMed
10.
go back to reference Shiina T, Nightingale KR, Palmeri ML et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 41:1126–1147CrossRefPubMed Shiina T, Nightingale KR, Palmeri ML et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 41:1126–1147CrossRefPubMed
11.
go back to reference Franchi-Abella S, Elie C, Correas JM (2013) Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging 94:497–501CrossRefPubMed Franchi-Abella S, Elie C, Correas JM (2013) Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging 94:497–501CrossRefPubMed
12.
go back to reference Zheng XZ, Ji P, Mao HW et al (2011) A novel approach to assessing changes in prostate stiffness with age using virtual touch tissue quantification. J Ultrasound Med 30:387–390CrossRefPubMed Zheng XZ, Ji P, Mao HW et al (2011) A novel approach to assessing changes in prostate stiffness with age using virtual touch tissue quantification. J Ultrasound Med 30:387–390CrossRefPubMed
13.
go back to reference Barr RG, Memo R, Schaub CR (2012) Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 28:13–20CrossRefPubMed Barr RG, Memo R, Schaub CR (2012) Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 28:13–20CrossRefPubMed
14.
go back to reference Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G (2013) Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 27:3280–3287CrossRefPubMed Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G (2013) Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 27:3280–3287CrossRefPubMed
15.
16.
go back to reference Correas JM, Tissier AM, Khairoune A et al (2015) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology 275:280–289CrossRefPubMed Correas JM, Tissier AM, Khairoune A et al (2015) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology 275:280–289CrossRefPubMed
17.
go back to reference Woo S, Kim SY, Lee MS, Cho JY, Kim SH (2015) Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging 39:484–487CrossRefPubMed Woo S, Kim SY, Lee MS, Cho JY, Kim SH (2015) Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging 39:484–487CrossRefPubMed
18.
go back to reference Samaratunga H, Montironi R, True L et al (2011) International society of urological pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 1: specimen handling. Mod Pathol 24:6–15CrossRefPubMed Samaratunga H, Montironi R, True L et al (2011) International society of urological pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 1: specimen handling. Mod Pathol 24:6–15CrossRefPubMed
19.
go back to reference Boehm K, Budaus L, Tennstedt P et al (2015) Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 95:189–196CrossRefPubMed Boehm K, Budaus L, Tennstedt P et al (2015) Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 95:189–196CrossRefPubMed
20.
go back to reference Boehm K, Salomon G, Beyer B et al (2015) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 193:794–800CrossRefPubMed Boehm K, Salomon G, Beyer B et al (2015) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 193:794–800CrossRefPubMed
21.
go back to reference Varghese T, Ophir J, Krouskop TA (2000) Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms. Ultrasound Med Biol 26:839–851CrossRefPubMed Varghese T, Ophir J, Krouskop TA (2000) Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms. Ultrasound Med Biol 26:839–851CrossRefPubMed
22.
go back to reference Barr RG, Zhang Z (2012) Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med 31:895–902CrossRefPubMed Barr RG, Zhang Z (2012) Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med 31:895–902CrossRefPubMed
23.
go back to reference Kruse SA, Smith JA, Lawrence AJ et al (2000) Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 45:1579–1590CrossRefPubMed Kruse SA, Smith JA, Lawrence AJ et al (2000) Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 45:1579–1590CrossRefPubMed
24.
go back to reference Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36:789–801CrossRefPubMed Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36:789–801CrossRefPubMed
25.
go back to reference Gibbs P, Tozer DJ, Liney GP, Turnbull LW (2001) Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate. Magn Reson Med 46:1054–1058CrossRefPubMed Gibbs P, Tozer DJ, Liney GP, Turnbull LW (2001) Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate. Magn Reson Med 46:1054–1058CrossRefPubMed
26.
go back to reference Gibbs P, Pickles MD, Turnbull LW (2006) Diffusion imaging of the prostate at 3.0 tesla. Investig Radiol 41:185–188CrossRef Gibbs P, Pickles MD, Turnbull LW (2006) Diffusion imaging of the prostate at 3.0 tesla. Investig Radiol 41:185–188CrossRef
27.
go back to reference Park SY, Kim CK, Park BK, Ha SY, Kwon GY, Kim B (2014) Diffusion-tensor MRI at 3 T: differentiation of central gland prostate cancer from benign prostatic hyperplasia. AJR Am J Roentgenol 202:W254–W262CrossRefPubMed Park SY, Kim CK, Park BK, Ha SY, Kwon GY, Kim B (2014) Diffusion-tensor MRI at 3 T: differentiation of central gland prostate cancer from benign prostatic hyperplasia. AJR Am J Roentgenol 202:W254–W262CrossRefPubMed
28.
go back to reference Sinha S, Sinha U (2004) In vivo diffusion tensor imaging of the human prostate. Magn Reson Med 52:530–537CrossRefPubMed Sinha S, Sinha U (2004) In vivo diffusion tensor imaging of the human prostate. Magn Reson Med 52:530–537CrossRefPubMed
29.
go back to reference Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–e330CrossRefPubMed Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–e330CrossRefPubMed
30.
go back to reference Hoeks CM, Hambrock T, Yakar D et al (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266:207–217CrossRefPubMed Hoeks CM, Hambrock T, Yakar D et al (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266:207–217CrossRefPubMed
Metadata
Title
Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study
Authors
Olivier Rouvière
Christelle Melodelima
Au Hoang Dinh
Flavie Bratan
Gaele Pagnoux
Thomas Sanzalone
Sébastien Crouzet
Marc Colombel
Florence Mège-Lechevallier
Rémi Souchon
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4534-9

Other articles of this Issue 5/2017

European Radiology 5/2017 Go to the issue