Skip to main content
Top
Published in: European Radiology 7/2013

01-07-2013 | Urogenital

Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study

Authors: Flavie Bratan, Emilie Niaf, Christelle Melodelima, Anne Laure Chesnais, Rémi Souchon, Florence Mège-Lechevallier, Marc Colombel, Olivier Rouvière

Published in: European Radiology | Issue 7/2013

Login to get access

Abstract

Objectives

To assess factors influencing prostate cancer detection on multiparametric (T2-weighted, diffusion-weighted, and dynamic contrast-enhanced) MRI.

Methods

One hundred and seventy-five patients who underwent radical prostatectomy were included. Pre-operative MRI performed at 1.5 T (n = 71) or 3 T (n = 104), with (n = 58) or without (n = 117) an endorectal coil were independently interpreted by two radiologists. A five-point subjective suspicion score (SSS) was assigned to all focal abnormalities (FAs). MR findings were then compared with whole-mount sections.

Results

Readers identified 192–214/362 cancers, with 130–155 false positives. Detection rates for tumours of <0.5 cc (cm3), 0.5–2 cc and >2 cc were 33–45/155 (21–29 %), 15–19/35 (43–54 %) and 8–9/12 (67–75 %) for Gleason ≤6, 17/27 (63 %), 42–45/51 (82–88 %) and 34/35 (97 %) for Gleason 7 and 4/5 (80 %), 13/14 (93 %) and 28/28 (100 %) for Gleason ≥8 cancers respectively. At multivariate analysis, detection rates were influenced by tumour Gleason score, histological volume, histological architecture and location (P < 0.0001), but neither by field strength nor coils used for imaging. The SSS was a significant predictor of both malignancy of FAs (P < 0.005) and aggressiveness of tumours (P < 0.00001).

Conclusions

Detection rates were significantly influenced by tumour characteristics, but neither by field strength nor coils used for imaging. The SSS significantly stratified the risk of malignancy of FAs and aggressiveness of detected tumours.

Key Points

• Prostate cancer volume, Gleason score, architecture and location are MRI predictors of detection.
• Field strength and coils used do not influence the tumour detection rate.
• Multiparametric MRI is accurate for detecting aggressive tumours.
• A subjective suspicion score can stratify the risk of malignancy and tumour aggressiveness.
Literature
1.
go back to reference Lindner U, Trachtenberg J, Lawrentschuk N (2010) Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 7:562–571PubMedCrossRef Lindner U, Trachtenberg J, Lawrentschuk N (2010) Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 7:562–571PubMedCrossRef
2.
go back to reference Rouviere O, Gelet A, Crouzet S, Chapelon JY (2012) Prostate focused ultrasound focal therapy—imaging for the future. Nat Rev Clin Oncol 9:721-727 Rouviere O, Gelet A, Crouzet S, Chapelon JY (2012) Prostate focused ultrasound focal therapy—imaging for the future. Nat Rev Clin Oncol 9:721-727
3.
go back to reference Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174, discussion 1175PubMedCrossRef Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174, discussion 1175PubMedCrossRef
4.
go back to reference Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology 255:89–99PubMedCrossRef Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology 255:89–99PubMedCrossRef
5.
go back to reference Sciarra A, Barentsz J, Bjartell A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59:962–977PubMedCrossRef Sciarra A, Barentsz J, Bjartell A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59:962–977PubMedCrossRef
6.
go back to reference Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591PubMedCrossRef Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591PubMedCrossRef
7.
go back to reference Heidenreich A (2011) Consensus criteria for the use of magnetic resonance imaging in the diagnosis and staging of prostate cancer: not ready for routine use. Eur Urol 59:495–497PubMedCrossRef Heidenreich A (2011) Consensus criteria for the use of magnetic resonance imaging in the diagnosis and staging of prostate cancer: not ready for routine use. Eur Urol 59:495–497PubMedCrossRef
8.
go back to reference Girouin N, Mege-Lechevallier F, Tonina Senes A et al (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17:1498–1509PubMedCrossRef Girouin N, Mege-Lechevallier F, Tonina Senes A et al (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17:1498–1509PubMedCrossRef
9.
go back to reference Cheikh AB, Girouin N, Colombel M et al (2009) Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol 19:770–778PubMedCrossRef Cheikh AB, Girouin N, Colombel M et al (2009) Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol 19:770–778PubMedCrossRef
10.
go back to reference Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824PubMedCrossRef Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824PubMedCrossRef
11.
go back to reference Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS (2012) Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 187:2032-2038 Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS (2012) Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 187:2032-2038
12.
go back to reference Isebaert S, Van den Bergh L, Haustermans K et al (2012) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. doi:10.1002/jmri.23938 Isebaert S, Van den Bergh L, Haustermans K et al (2012) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. doi:10.​1002/​jmri.​23938
13.
go back to reference Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L (2006) Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 176:2432–2437PubMedCrossRef Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L (2006) Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 176:2432–2437PubMedCrossRef
14.
go back to reference Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2–sparse versus dense cancers. Radiology 249:900–908PubMedCrossRef Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2–sparse versus dense cancers. Radiology 249:900–908PubMedCrossRef
15.
go back to reference Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21:593–603PubMedCrossRef Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21:593–603PubMedCrossRef
16.
go back to reference Kayhan A, Fan X, Oommen J, Oto A (2010) Multi-parametric MR imaging of transition zone prostate cancer: imaging features, detection and staging. World J Radiol 2:180–187PubMedCrossRef Kayhan A, Fan X, Oommen J, Oto A (2010) Multi-parametric MR imaging of transition zone prostate cancer: imaging features, detection and staging. World J Radiol 2:180–187PubMedCrossRef
17.
go back to reference Heijmink SW, Futterer JJ, Hambrock T et al (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3T—comparison of image quality, localization, and staging performance. Radiology 244:184–195PubMedCrossRef Heijmink SW, Futterer JJ, Hambrock T et al (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3T—comparison of image quality, localization, and staging performance. Radiology 244:184–195PubMedCrossRef
18.
go back to reference Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757PubMedCrossRef Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757PubMedCrossRef
19.
go back to reference Kim CK, Park BK, Kim B (2010) Diffusion-weighted MRI at 3T for the evaluation of prostate cancer. AJR Am J Roentgenol 194:1461–1469PubMedCrossRef Kim CK, Park BK, Kim B (2010) Diffusion-weighted MRI at 3T for the evaluation of prostate cancer. AJR Am J Roentgenol 194:1461–1469PubMedCrossRef
20.
go back to reference Dickinson L, Ahmed HU, Allen C et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59:477–494PubMedCrossRef Dickinson L, Ahmed HU, Allen C et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59:477–494PubMedCrossRef
21.
go back to reference Rouviere O, Hartman RP, Lyonnet D (2006) Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 16:276–284PubMedCrossRef Rouviere O, Hartman RP, Lyonnet D (2006) Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 16:276–284PubMedCrossRef
22.
go back to reference Shukla-Dave A, Hricak H, Eberhardt SC et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings—initial observations. Radiology 231:717–724PubMedCrossRef Shukla-Dave A, Hricak H, Eberhardt SC et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings—initial observations. Radiology 231:717–724PubMedCrossRef
23.
go back to reference Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792PubMedCrossRef Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792PubMedCrossRef
24.
go back to reference Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef
25.
go back to reference Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257:715–723PubMedCrossRef Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257:715–723PubMedCrossRef
26.
go back to reference Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246:168–176PubMedCrossRef Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246:168–176PubMedCrossRef
27.
go back to reference Hambrock T, Somford DM, Huisman HJ et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259:453–461PubMedCrossRef Hambrock T, Somford DM, Huisman HJ et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259:453–461PubMedCrossRef
28.
go back to reference Giles SL, Morgan VA, Riches SF, Thomas K, Parker C, deSouza NM (2011) Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am J Roentgenol 196:586–591PubMedCrossRef Giles SL, Morgan VA, Riches SF, Thomas K, Parker C, deSouza NM (2011) Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am J Roentgenol 196:586–591PubMedCrossRef
29.
go back to reference Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, Renzulli JF 2nd (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol 194:W316–W322PubMedCrossRef Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, Renzulli JF 2nd (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol 194:W316–W322PubMedCrossRef
30.
go back to reference Verma S, Rajesh A, Morales H et al (2011) Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 196:374–381PubMedCrossRef Verma S, Rajesh A, Morales H et al (2011) Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 196:374–381PubMedCrossRef
31.
go back to reference Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390PubMedCrossRef Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390PubMedCrossRef
32.
go back to reference Turkbey B, Shah VP, Pang Y et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495PubMedCrossRef Turkbey B, Shah VP, Pang Y et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495PubMedCrossRef
33.
go back to reference Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814PubMedCrossRef Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814PubMedCrossRef
34.
go back to reference Crehange G, Parfait S, Liegard M et al (2011) Tumor volume and metabolism of prostate cancer determined by proton magnetic resonance spectroscopic imaging at 3T without endorectal coil reveal potential clinical implications in the context of radiation oncology. Int J Radiat Oncol Biol Phys 80:1087–1094PubMedCrossRef Crehange G, Parfait S, Liegard M et al (2011) Tumor volume and metabolism of prostate cancer determined by proton magnetic resonance spectroscopic imaging at 3T without endorectal coil reveal potential clinical implications in the context of radiation oncology. Int J Radiat Oncol Biol Phys 80:1087–1094PubMedCrossRef
35.
go back to reference Chan TY, Partin AW, Walsh PC, Epstein JI (2000) Prognostic significance of Gleason score 3 + 4 versus Gleason score 4 + 3 tumor at radical prostatectomy. Urology 56:823–827PubMedCrossRef Chan TY, Partin AW, Walsh PC, Epstein JI (2000) Prognostic significance of Gleason score 3 + 4 versus Gleason score 4 + 3 tumor at radical prostatectomy. Urology 56:823–827PubMedCrossRef
36.
go back to reference Tollefson MK, Leibovich BC, Slezak JM, Zincke H, Blute ML (2006) Long-term prognostic significance of primary Gleason pattern in patients with Gleason score 7 prostate cancer: impact on prostate cancer specific survival. J Urol 175:547–551PubMedCrossRef Tollefson MK, Leibovich BC, Slezak JM, Zincke H, Blute ML (2006) Long-term prognostic significance of primary Gleason pattern in patients with Gleason score 7 prostate cancer: impact on prostate cancer specific survival. J Urol 175:547–551PubMedCrossRef
37.
go back to reference Noguchi M, Stamey TA, McNeal JE, Yemoto CE (2000) Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89:1056–1064PubMedCrossRef Noguchi M, Stamey TA, McNeal JE, Yemoto CE (2000) Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89:1056–1064PubMedCrossRef
38.
go back to reference Schned AR, Wheeler KJ, Hodorowski CA et al (1996) Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol 20:1501–1506PubMedCrossRef Schned AR, Wheeler KJ, Hodorowski CA et al (1996) Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol 20:1501–1506PubMedCrossRef
39.
go back to reference Stamey TA, McNeal JE, Freiha FS, Redwine E (1988) Morphometric and clinical studies on 68 consecutive radical prostatectomies. J Urol 139:1235–1241PubMed Stamey TA, McNeal JE, Freiha FS, Redwine E (1988) Morphometric and clinical studies on 68 consecutive radical prostatectomies. J Urol 139:1235–1241PubMed
40.
go back to reference Hughes C, Rouviere O, Mege-Lechevallier F, Souchon R, Prost R (2012) Robust alignment of prostate histology slices with quantified accuracy. IEEE Trans Biomed Eng 60:281-291 Hughes C, Rouviere O, Mege-Lechevallier F, Souchon R, Prost R (2012) Robust alignment of prostate histology slices with quantified accuracy. IEEE Trans Biomed Eng 60:281-291
41.
go back to reference Futterer JJ, Engelbrecht MR, Jager GJ et al (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 17:1055–1065PubMedCrossRef Futterer JJ, Engelbrecht MR, Jager GJ et al (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 17:1055–1065PubMedCrossRef
42.
go back to reference Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience(1). Acad Radiol 11:863–867PubMed Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience(1). Acad Radiol 11:863–867PubMed
43.
go back to reference Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R (2006) Comparative evaluation between external phased array coil at 3T and endorectal coil at 1.5T: preliminary results. J Comput Assist Tomogr 30:355–361PubMedCrossRef Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R (2006) Comparative evaluation between external phased array coil at 3T and endorectal coil at 1.5T: preliminary results. J Comput Assist Tomogr 30:355–361PubMedCrossRef
44.
go back to reference Beyersdorff D, Taymoorian K, Knosel T et al (2005) MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol 185:1214–1220PubMedCrossRef Beyersdorff D, Taymoorian K, Knosel T et al (2005) MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol 185:1214–1220PubMedCrossRef
45.
go back to reference Hricak H, White S, Vigneron D et al (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal—pelvic phased-array coils. Radiology 193:703–709PubMed Hricak H, White S, Vigneron D et al (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal—pelvic phased-array coils. Radiology 193:703–709PubMed
46.
go back to reference Ahmed HU, Kirkham A, Arya M et al (2009) Is it time to consider a role for MRI before prostate biopsy? Nat Rev 6:197–206 Ahmed HU, Kirkham A, Arya M et al (2009) Is it time to consider a role for MRI before prostate biopsy? Nat Rev 6:197–206
47.
go back to reference Rouviere O, Papillard M, Girouin N et al (2012) Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur Radiol 22:1149–1157PubMedCrossRef Rouviere O, Papillard M, Girouin N et al (2012) Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur Radiol 22:1149–1157PubMedCrossRef
48.
go back to reference Scheidler J, Hricak H, Vigneron DB et al (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 213:473–480PubMed Scheidler J, Hricak H, Vigneron DB et al (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 213:473–480PubMed
49.
go back to reference Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246:480–488PubMedCrossRef Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246:480–488PubMedCrossRef
50.
go back to reference Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133PubMedCrossRef Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133PubMedCrossRef
Metadata
Title
Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study
Authors
Flavie Bratan
Emilie Niaf
Christelle Melodelima
Anne Laure Chesnais
Rémi Souchon
Florence Mège-Lechevallier
Marc Colombel
Olivier Rouvière
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 7/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-013-2795-0

Other articles of this Issue 7/2013

European Radiology 7/2013 Go to the issue