Skip to main content
Top
Published in: European Radiology 7/2016

Open Access 01-07-2016 | Magnetic Resonance

Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions

Authors: Mihaela Rata, David J. Collins, James Darcy, Christina Messiou, Nina Tunariu, Nandita Desouza, Helen Young, Martin O. Leach, Matthew R. Orton

Published in: European Radiology | Issue 7/2016

Login to get access

Abstract

Objectives

Pharmacokinetic (PK) modelling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data requires a reliable measure of the arterial input function (AIF) to robustly characterise tumour vascular properties. This study compared repeatability and treatment-response effects of DCE-MRI-derived PK parameters using a population-averaged AIF and three patient-specific AIFs derived from pre-bolus MRI, DCE-MRI and dynamic contrast computed tomography (DC-CT) data.

Methods

The four approaches were compared in 13 patients with abdominal metastases. Baseline repeatability [Bland-Altman statistics; coefficient of variation (CoV)], cohort percentage change and p value (paired t test) and number of patients with significant DCE-MRI parameter change post-treatment (limits of agreement) were assessed.

Results

Individual AIFs were obtained for all 13 patients with pre-bolus MRI and DC-CT-derived AIFs, but only 10/13 patients had AIFs measurable from DCE-MRI data. The best CoV (7.5 %) of the transfer coefficient between blood plasma and extravascular extracellular space (K trans) was obtained using a population-averaged AIF. All four AIF methods detected significant treatment changes: the most significant was the DC-CT-derived AIF. The population-based AIF was similar to or better than the pre-bolus and DCE-MRI-derived AIFs.

Conclusions

A population-based AIF is the recommended approach for measuring cohort and individual effects since it has the best repeatability and none of the PK parameters derived using measured AIFs demonstrated an improvement in treatment sensitivity.

Key Points

Pharmacokinetic modelling of DCE-MRI data requires a reliable measure of AIF.
Individual MRI-DCE-derived AIFs cannot reliably be extracted from patients.
All four AIF methods detected significant K trans changes after treatment.
A population-based AIF can be recommended for measuring cohort treatment responses in trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620CrossRefPubMed Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620CrossRefPubMed
2.
go back to reference Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610CrossRefPubMedPubMedCentral Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610CrossRefPubMedPubMedCentral
3.
go back to reference O'Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195CrossRefPubMedPubMedCentral O'Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195CrossRefPubMedPubMedCentral
4.
go back to reference Leach MO, Morgan B, Tofts PS et al (2012) Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22:1451–1464CrossRefPubMed Leach MO, Morgan B, Tofts PS et al (2012) Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22:1451–1464CrossRefPubMed
5.
go back to reference Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed
6.
go back to reference Köstler H, Ritter C, Lipp M, Beer M, Hahn D, Sandstede J (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299CrossRefPubMed Köstler H, Ritter C, Lipp M, Beer M, Hahn D, Sandstede J (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299CrossRefPubMed
7.
go back to reference Kershaw LE, Cheng HL (2011) A general dual-bolus approach for quantitative DCE-MRI. Magn Reson Imaging 29:160–166CrossRefPubMed Kershaw LE, Cheng HL (2011) A general dual-bolus approach for quantitative DCE-MRI. Magn Reson Imaging 29:160–166CrossRefPubMed
8.
go back to reference Jackson A, Haroon H, Zhu XP, Li KL, Thacker NA, Jayson G (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMed Jackson A, Haroon H, Zhu XP, Li KL, Thacker NA, Jayson G (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMed
9.
go back to reference Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMed Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMed
10.
go back to reference Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101CrossRefPubMed Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101CrossRefPubMed
11.
go back to reference Messiou C, Orton M, Ang JE et al (2012) Advanced solid tumors treated with cediranib: comparison of dynamic contrast-enhanced MR imaging and CT as markers of vascular activity. Radiology 265:426–436CrossRefPubMed Messiou C, Orton M, Ang JE et al (2012) Advanced solid tumors treated with cediranib: comparison of dynamic contrast-enhanced MR imaging and CT as markers of vascular activity. Radiology 265:426–436CrossRefPubMed
12.
go back to reference Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215CrossRefPubMed Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215CrossRefPubMed
13.
go back to reference Rata M, Collins D, Darcy J et al (2012) Evaluation of reproducibility of measured arterial input functions and DCE-MRI-derived model estimates obtained using either prebolus individual AIF’s or population derived AIF’s. Proc Intl Soc Magn Reson Med 20:237 Rata M, Collins D, Darcy J et al (2012) Evaluation of reproducibility of measured arterial input functions and DCE-MRI-derived model estimates obtained using either prebolus individual AIF’s or population derived AIF’s. Proc Intl Soc Magn Reson Med 20:237
14.
go back to reference Jajamovich GH, Calcagno C, Dyvorne HA, Rusinek H, Taouli B (2014) DCE-MRI of the liver: reconstruction of the arterial input function using a low dose prebolus contrast injection. PLoS One 9, e115667CrossRefPubMedPubMedCentral Jajamovich GH, Calcagno C, Dyvorne HA, Rusinek H, Taouli B (2014) DCE-MRI of the liver: reconstruction of the arterial input function using a low dose prebolus contrast injection. PLoS One 9, e115667CrossRefPubMedPubMedCentral
15.
go back to reference Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239CrossRefPubMed Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239CrossRefPubMed
16.
17.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed
18.
go back to reference Wang Y, Huang W, Panicek DM, Schwartz LH, Koutcer JA (2008) Feasibility of using limited-population-based arterial input function for pharma-cokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magn Reson Med 59:1183–1189CrossRefPubMedPubMedCentral Wang Y, Huang W, Panicek DM, Schwartz LH, Koutcer JA (2008) Feasibility of using limited-population-based arterial input function for pharma-cokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magn Reson Med 59:1183–1189CrossRefPubMedPubMedCentral
19.
go back to reference Shukla-Dave A, Lee N, Stambuk H et al (2009) Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Med Phys 9:4CrossRefPubMedPubMedCentral Shukla-Dave A, Lee N, Stambuk H et al (2009) Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Med Phys 9:4CrossRefPubMedPubMedCentral
20.
go back to reference Onxley JD, Yoo DS, Muradyan N, MacFall JR, Brizel DM, Craciunescu OI (2014) Comprehensive population-averaged arterial input function for dynamic contrast–enhanced magnetic resonance imaging of head and neck cancer. Int J Radiat Oncol Biol Phys 89:658–665CrossRefPubMed Onxley JD, Yoo DS, Muradyan N, MacFall JR, Brizel DM, Craciunescu OI (2014) Comprehensive population-averaged arterial input function for dynamic contrast–enhanced magnetic resonance imaging of head and neck cancer. Int J Radiat Oncol Biol Phys 89:658–665CrossRefPubMed
21.
go back to reference Meng R, Chang SD, Jones EC, Goldenberg SL, Kozlowski P (2010) Comparison between population average and experimentally measured Arterial Input Function in predicting biopsy results in prostate cancer. Acad Radiol 17:520–525CrossRefPubMedPubMedCentral Meng R, Chang SD, Jones EC, Goldenberg SL, Kozlowski P (2010) Comparison between population average and experimentally measured Arterial Input Function in predicting biopsy results in prostate cancer. Acad Radiol 17:520–525CrossRefPubMedPubMedCentral
22.
go back to reference Li X, Welch EB, Arlinghaus LR et al (2011) A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Phys Med Biol 56:5753–5769CrossRefPubMedPubMedCentral Li X, Welch EB, Arlinghaus LR et al (2011) A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Phys Med Biol 56:5753–5769CrossRefPubMedPubMedCentral
23.
go back to reference Miyazaki K, Jerome NP, Collins DJ et al (2015) Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. Eur Radiol. doi:10.1007/s00330-015-3666-7 PubMedCentral Miyazaki K, Jerome NP, Collins DJ et al (2015) Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. Eur Radiol. doi:10.​1007/​s00330-015-3666-7 PubMedCentral
Metadata
Title
Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions
Authors
Mihaela Rata
David J. Collins
James Darcy
Christina Messiou
Nina Tunariu
Nandita Desouza
Helen Young
Martin O. Leach
Matthew R. Orton
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 7/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4012-9

Other articles of this Issue 7/2016

European Radiology 7/2016 Go to the issue