Skip to main content
Top
Published in: European Radiology 7/2012

01-07-2012 | Magnetic Resonance

Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

Authors: M. O. Leach, B. Morgan, P. S. Tofts, D. L. Buckley, W. Huang, M. A. Horsfield, T. L. Chenevert, D. J. Collins, A. Jackson, D. Lomas, B. Whitcher, L. Clarke, R. Plummer, I. Judson, R. Jones, R. Alonzi, T. Brunner, D. M. Koh, P. Murphy, J. C. Waterton, G. Parker, M. J. Graves, T. W. J. Scheenen, T. W. Redpath, M. Orton, G. Karczmar, H. Huisman, J. Barentsz, A. Padhani, on behalf of the Experimental Cancer Medicine Centres Imaging Network Steering Committee

Published in: European Radiology | Issue 7/2012

Login to get access

Abstract

Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here.
Key Points
Tumour vascular function is key to tumour development and treatment
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascular function
Thus DCE-MRI with pharmacokinetic models can assess novel treatments
Many recent developments are advancing the accuracy of and information from DCE-MRI
Establishing common methodology across multiple centres is challenging and requires accepted guidelines
Literature
1.
go back to reference Jackson E, Ashton E, Evelhoch JL et al (2010) Multivendor, multisite DCE-MRI phantom validation study. In: Proceedings of the 95th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA '10); December 2009; Chicago, IL, USA Jackson E, Ashton E, Evelhoch JL et al (2010) Multivendor, multisite DCE-MRI phantom validation study. In: Proceedings of the 95th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA '10); December 2009; Chicago, IL, USA
2.
go back to reference Meyer CR, Armato SG, Fenimore CP et al (2009) Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources. Transl Oncol 2:198–210PubMed Meyer CR, Armato SG, Fenimore CP et al (2009) Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources. Transl Oncol 2:198–210PubMed
3.
go back to reference Leach MO, Brindle KM, Evelhoch JL et al (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76:S87–S91PubMedCrossRef Leach MO, Brindle KM, Evelhoch JL et al (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76:S87–S91PubMedCrossRef
4.
go back to reference Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef
5.
go back to reference Evelhoch J, Garwood N, Vigneron D et al (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: Workshop report. Cancer Research 65:7041–7044PubMedCrossRef Evelhoch J, Garwood N, Vigneron D et al (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: Workshop report. Cancer Research 65:7041–7044PubMedCrossRef
6.
go back to reference Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259PubMedCrossRef Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259PubMedCrossRef
7.
go back to reference Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907PubMedCrossRef Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907PubMedCrossRef
8.
go back to reference Tofts PS (1998) Standardisation and optimisation of magnetic resonance techniques for multicentre studies. J Neurol Neurosurg Psychiatry 64:S37–S43PubMedCrossRef Tofts PS (1998) Standardisation and optimisation of magnetic resonance techniques for multicentre studies. J Neurol Neurosurg Psychiatry 64:S37–S43PubMedCrossRef
9.
go back to reference Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef
10.
go back to reference Jia G, Heverhagen JT, Polzer H et al (2006) Dynamic contrast enhanced magnetic resonance imaging as a biological marker to noninvasively assess the effect of finasteride on prostatic suburethral microcirculation. J Urol 176:2299–2304PubMedCrossRef Jia G, Heverhagen JT, Polzer H et al (2006) Dynamic contrast enhanced magnetic resonance imaging as a biological marker to noninvasively assess the effect of finasteride on prostatic suburethral microcirculation. J Urol 176:2299–2304PubMedCrossRef
11.
go back to reference McKeage M, Fong P, Jeffery M et al (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumours: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784PubMedCrossRef McKeage M, Fong P, Jeffery M et al (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumours: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784PubMedCrossRef
12.
go back to reference Head M, Jameson MB (2010) The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs 19:295–304PubMedCrossRef Head M, Jameson MB (2010) The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs 19:295–304PubMedCrossRef
13.
go back to reference Eskens FALM, Steeghs N, Verweij J et al (2009) Phase I Dose Escalation Study of Telatinib, a Tyrosine Kinase Inhibitor of Vascular Endothelial Growth Factor Receptor 2 and 3, Platelet-Derived Growth Factor Receptor beta, and c-Kit, in Patients With Advanced or Metastatic Solid Tumours. J Clin Oncol 27:4169–4176PubMedCrossRef Eskens FALM, Steeghs N, Verweij J et al (2009) Phase I Dose Escalation Study of Telatinib, a Tyrosine Kinase Inhibitor of Vascular Endothelial Growth Factor Receptor 2 and 3, Platelet-Derived Growth Factor Receptor beta, and c-Kit, in Patients With Advanced or Metastatic Solid Tumours. J Clin Oncol 27:4169–4176PubMedCrossRef
14.
go back to reference LoRusso PM, Gadgeel SM, Wozniak A et al (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumours. Invest New Drugs 26:159–167PubMedCrossRef LoRusso PM, Gadgeel SM, Wozniak A et al (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumours. Invest New Drugs 26:159–167PubMedCrossRef
15.
go back to reference Drevs J, Siegert P, Medinger M et al (2007) Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signalling inhibitor, in patients with advanced solid tumours. J Clin Oncol 25:3045–3054PubMedCrossRef Drevs J, Siegert P, Medinger M et al (2007) Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signalling inhibitor, in patients with advanced solid tumours. J Clin Oncol 25:3045–3054PubMedCrossRef
16.
17.
go back to reference Miyazaki K, Orton MR, Davidson RI et al (2011) The feasibility of dynamic contrast-enhanced magnetic resonance imaging to monitor and predict peptide receptor radionuclide therapy outcome in patients with neuroendocrine tumour liver metastases. Radiology 17:2012. doi:10.1148/radiol.12110770, Published online before print February Miyazaki K, Orton MR, Davidson RI et al (2011) The feasibility of dynamic contrast-enhanced magnetic resonance imaging to monitor and predict peptide receptor radionuclide therapy outcome in patients with neuroendocrine tumour liver metastases. Radiology 17:2012. doi:10.​1148/​radiol.​12110770, Published online before print February
18.
go back to reference Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRef Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRef
19.
go back to reference Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200PubMedCrossRef Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200PubMedCrossRef
20.
go back to reference Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55:1326–1333PubMedCrossRef Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55:1326–1333PubMedCrossRef
21.
go back to reference Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135PubMedCrossRef Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135PubMedCrossRef
22.
go back to reference Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJ (2011) The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 65:108–119PubMedCrossRef Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJ (2011) The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 65:108–119PubMedCrossRef
23.
go back to reference Buckley DL, Parker GJM (2004) T1 estimation using variable flip angle spoiled gradient echo for dynamic contrast-enhanced MRI: Arterial input measurement improves accuracy in the presence of B1 error. Proceedings of the 12th Annual Scientific Meeting of the ISMRM, Kyoto, pp 1968 Buckley DL, Parker GJM (2004) T1 estimation using variable flip angle spoiled gradient echo for dynamic contrast-enhanced MRI: Arterial input measurement improves accuracy in the presence of B1 error. Proceedings of the 12th Annual Scientific Meeting of the ISMRM, Kyoto, pp 1968
24.
25.
go back to reference Firbank MJ, Harrison RM, Williams ED, Coulthard A (2000) Quality assurance for MRI: practical experience. Br J Radiol 73:376–383PubMed Firbank MJ, Harrison RM, Williams ED, Coulthard A (2000) Quality assurance for MRI: practical experience. Br J Radiol 73:376–383PubMed
26.
go back to reference Ihalainen T, Sipila O, Savolainen S (2004) MRI quality control: six imagers studied using eleven unified image quality parameters. Eur Radiol 14:1859–1865PubMedCrossRef Ihalainen T, Sipila O, Savolainen S (2004) MRI quality control: six imagers studied using eleven unified image quality parameters. Eur Radiol 14:1859–1865PubMedCrossRef
27.
go back to reference Lerski RA, de Certaines JD (1993) Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging 11:817–833PubMedCrossRef Lerski RA, de Certaines JD (1993) Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging 11:817–833PubMedCrossRef
28.
go back to reference Tofts P (2003) QA: Quality assurance, accuracy, precision and phantoms. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester, pp 55–81 Tofts P (2003) QA: Quality assurance, accuracy, precision and phantoms. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester, pp 55–81
29.
go back to reference Lerski RA (1993) Trial of modifications to Eurospin MRI test objects. Magn Reson Imaging 11:835–839PubMedCrossRef Lerski RA (1993) Trial of modifications to Eurospin MRI test objects. Magn Reson Imaging 11:835–839PubMedCrossRef
30.
go back to reference Jackson EF, Barboriak DP, Bidaut LM, Meyer CR (2009) Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources. Transl Oncol 2:211–215PubMed Jackson EF, Barboriak DP, Bidaut LM, Meyer CR (2009) Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources. Transl Oncol 2:211–215PubMed
31.
go back to reference Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9:163–171PubMedCrossRef Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9:163–171PubMedCrossRef
32.
go back to reference Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med 62:240–246PubMedCrossRef Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med 62:240–246PubMedCrossRef
33.
go back to reference Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292PubMedCrossRef Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292PubMedCrossRef
34.
go back to reference Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumours. J Magn Reson Imaging 12:347–357PubMedCrossRef Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumours. J Magn Reson Imaging 12:347–357PubMedCrossRef
35.
go back to reference Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000PubMedCrossRef Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000PubMedCrossRef
36.
go back to reference Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167PubMedCrossRef Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167PubMedCrossRef
37.
go back to reference Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308PubMedCrossRef Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308PubMedCrossRef
38.
go back to reference Thomsen HS (2005) How to avoid CIN: guidelines from the European Society of Urogenital Radiology. Nephrol Dial Transplant 20:i18–22PubMedCrossRef Thomsen HS (2005) How to avoid CIN: guidelines from the European Society of Urogenital Radiology. Nephrol Dial Transplant 20:i18–22PubMedCrossRef
39.
go back to reference Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318PubMedCrossRef Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318PubMedCrossRef
42.
go back to reference Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson. Med 17:357–367 Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson. Med 17:357–367
43.
go back to reference Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373PubMedCrossRef Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373PubMedCrossRef
44.
go back to reference Morgan B, Utting JF, Higginson A, Thomas AL, Steward WP, Horsfield MA (2006) A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging. Br J Cancer 94:1420–1427PubMedCrossRef Morgan B, Utting JF, Higginson A, Thomas AL, Steward WP, Horsfield MA (2006) A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging. Br J Cancer 94:1420–1427PubMedCrossRef
45.
go back to reference Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142PubMedCrossRef Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142PubMedCrossRef
46.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
47.
go back to reference Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215PubMedCrossRef Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215PubMedCrossRef
48.
go back to reference Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073PubMedCrossRef Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073PubMedCrossRef
49.
go back to reference Melbourne A, Atkinson D, Hawkes D (2008) Influence of organ motion and contrast enhancement on image registration. Med Image Comput Comput Assist Interv 11:948–955PubMed Melbourne A, Atkinson D, Hawkes D (2008) Influence of organ motion and contrast enhancement on image registration. Med Image Comput Comput Assist Interv 11:948–955PubMed
50.
go back to reference Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D (2007) Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol 52:5147–5156PubMedCrossRef Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D (2007) Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol 52:5147–5156PubMedCrossRef
51.
go back to reference Buonaccorsi GA, O'Connor JP, Caunce A et al (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58:1010–1019PubMedCrossRef Buonaccorsi GA, O'Connor JP, Caunce A et al (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58:1010–1019PubMedCrossRef
52.
go back to reference Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217PubMedCrossRef Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217PubMedCrossRef
53.
go back to reference Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef
54.
go back to reference Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2010) Assessment of tumor blood flow in breast tumours with T1-dynamic contrast-enhanced MR imaging: impact of dose reduction and the use of a prebolus technique on diagnostic efficacy. J Magn Reson Imaging 31:556–561PubMedCrossRef Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2010) Assessment of tumor blood flow in breast tumours with T1-dynamic contrast-enhanced MR imaging: impact of dose reduction and the use of a prebolus technique on diagnostic efficacy. J Magn Reson Imaging 31:556–561PubMedCrossRef
55.
go back to reference Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2007) Quantification of perfusion and permeability in breast tumours with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167PubMedCrossRef Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2007) Quantification of perfusion and permeability in breast tumours with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167PubMedCrossRef
56.
go back to reference Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290PubMedCrossRef Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290PubMedCrossRef
57.
go back to reference Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684PubMedCrossRef Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684PubMedCrossRef
58.
go back to reference Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56:986–992PubMedCrossRef Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56:986–992PubMedCrossRef
59.
go back to reference Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134PubMedCrossRef Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134PubMedCrossRef
60.
go back to reference Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52:1110–1117PubMedCrossRef Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52:1110–1117PubMedCrossRef
61.
go back to reference Yankeelov TE, Luci JJ, Lepage M et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23:519–529PubMedCrossRef Yankeelov TE, Luci JJ, Lepage M et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23:519–529PubMedCrossRef
62.
go back to reference Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58:1266–1275PubMedCrossRef Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58:1266–1275PubMedCrossRef
63.
go back to reference Fan X, Haney CR, Mustafi D et al (2010) Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med 64:1821–1826PubMedCrossRef Fan X, Haney CR, Mustafi D et al (2010) Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med 64:1821–1826PubMedCrossRef
64.
go back to reference Fluckiger JU, Schabel MC, Dibella EV (2009) Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn Reson Med 62:1477–1486PubMedCrossRef Fluckiger JU, Schabel MC, Dibella EV (2009) Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn Reson Med 62:1477–1486PubMedCrossRef
65.
go back to reference Schabel MC, DiBella EV, Jensen RL, Salzman KL (2010) A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results. Phys Med Biol 55:4807–4823PubMedCrossRef Schabel MC, DiBella EV, Jensen RL, Salzman KL (2010) A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results. Phys Med Biol 55:4807–4823PubMedCrossRef
66.
go back to reference Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231PubMedCrossRef Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231PubMedCrossRef
67.
go back to reference Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed
68.
go back to reference Horsfield MA, Thornton JS, Gill A, Jager HR, Priest AN, Morgan B (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949PubMedCrossRef Horsfield MA, Thornton JS, Gill A, Jager HR, Priest AN, Morgan B (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949PubMedCrossRef
69.
go back to reference Orton MR, d’Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239PubMedCrossRef Orton MR, d’Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239PubMedCrossRef
70.
go back to reference Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499PubMedCrossRef Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499PubMedCrossRef
71.
go back to reference Tofts PS, Steens SC, Cercignani M et al (2006) Sources of variation in multi-centre brain MTR histogram studies: body-coil transmission eliminates inter-centre differences. MAGMA 19:209–222PubMedCrossRef Tofts PS, Steens SC, Cercignani M et al (2006) Sources of variation in multi-centre brain MTR histogram studies: body-coil transmission eliminates inter-centre differences. MAGMA 19:209–222PubMedCrossRef
72.
go back to reference Balvay D, Frouin F, Calmon G et al (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877PubMedCrossRef Balvay D, Frouin F, Calmon G et al (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877PubMedCrossRef
73.
go back to reference Jeukens CR, van den Berg CA, Donker R et al (2006) Feasibility and measurement precision of 3D quantitative blood flow mapping of the prostate using dynamic contrast-enhanced multi-slice CT. Phys Med Biol 51:4329–4343PubMedCrossRef Jeukens CR, van den Berg CA, Donker R et al (2006) Feasibility and measurement precision of 3D quantitative blood flow mapping of the prostate using dynamic contrast-enhanced multi-slice CT. Phys Med Biol 51:4329–4343PubMedCrossRef
75.
go back to reference Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745PubMedCrossRef Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745PubMedCrossRef
76.
go back to reference Donaldson SB, West CM, Davidson SE et al (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700PubMedCrossRef Donaldson SB, West CM, Davidson SE et al (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700PubMedCrossRef
77.
go back to reference Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumours: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429PubMedCrossRef Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumours: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429PubMedCrossRef
78.
go back to reference Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303PubMed Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303PubMed
79.
go back to reference St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385PubMedCrossRef St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385PubMedCrossRef
80.
go back to reference St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377PubMedCrossRef St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377PubMedCrossRef
81.
go back to reference Koh TS, Cheong LH, Hou Z, Soh YC (2003) A physiologic model of capillary-tissue exchange for dynamic contrast-enhanced imaging of tumor microcirculation. IEEE Trans Biomed Eng 50:159–167PubMedCrossRef Koh TS, Cheong LH, Hou Z, Soh YC (2003) A physiologic model of capillary-tissue exchange for dynamic contrast-enhanced imaging of tumor microcirculation. IEEE Trans Biomed Eng 50:159–167PubMedCrossRef
82.
go back to reference Huang W, Li X, Morris EA et al (2008) The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumours in vivo. Proc Natl Acad Sci USA 105:17943–17948PubMedCrossRef Huang W, Li X, Morris EA et al (2008) The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumours in vivo. Proc Natl Acad Sci USA 105:17943–17948PubMedCrossRef
83.
go back to reference Li X, Huang W, Morris EA et al (2008) Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci USA 105:17937–17942PubMedCrossRef Li X, Huang W, Morris EA et al (2008) Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci USA 105:17937–17942PubMedCrossRef
84.
go back to reference Huang W, Tudorica LA, Li X et al (2011) Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging. Radiology 261:394–403PubMedCrossRef Huang W, Tudorica LA, Li X et al (2011) Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging. Radiology 261:394–403PubMedCrossRef
85.
go back to reference Ewing JR, Brown SL, Lu M et al (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9 L model of rat cerebral tumor. J Cereb Blood Flow Metab 26:310–320PubMedCrossRef Ewing JR, Brown SL, Lu M et al (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9 L model of rat cerebral tumor. J Cereb Blood Flow Metab 26:310–320PubMedCrossRef
86.
go back to reference Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514PubMedCrossRef Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514PubMedCrossRef
87.
go back to reference Brix G, Zwick S, Kiessling F, Griebel J (2009) Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 36:2923–2933PubMedCrossRef Brix G, Zwick S, Kiessling F, Griebel J (2009) Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 36:2923–2933PubMedCrossRef
88.
go back to reference Buckley DL, Kershaw LE, Stanisz GJ (2008) Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 60:1011–1019PubMedCrossRef Buckley DL, Kershaw LE, Stanisz GJ (2008) Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 60:1011–1019PubMedCrossRef
89.
go back to reference Li X, Springer CS Jr, Jerosch-Herold M (2009) First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR Biomed 22:148–157PubMedCrossRef Li X, Springer CS Jr, Jerosch-Herold M (2009) First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR Biomed 22:148–157PubMedCrossRef
90.
go back to reference Akaike H (1974) New Look at Statistical-Model Identification. IEEE T Automat Contr Ac 19:716–723CrossRef Akaike H (1974) New Look at Statistical-Model Identification. IEEE T Automat Contr Ac 19:716–723CrossRef
91.
go back to reference O'Connor JPB, Jayson GC, Jackson A et al (2007) Enhancing fraction predicts clinical outcome following first-line chemotherapy in patients with epithelial ovarian carcinoma. Clin Cancer Res 13:6130–6135PubMedCrossRef O'Connor JPB, Jayson GC, Jackson A et al (2007) Enhancing fraction predicts clinical outcome following first-line chemotherapy in patients with epithelial ovarian carcinoma. Clin Cancer Res 13:6130–6135PubMedCrossRef
92.
go back to reference Jayson GC, Parker GJ, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981PubMedCrossRef Jayson GC, Parker GJ, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981PubMedCrossRef
93.
go back to reference Mills SJ, Soh C, O'Connor JP et al (2009) Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 19:1489–1498PubMedCrossRef Mills SJ, Soh C, O'Connor JP et al (2009) Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 19:1489–1498PubMedCrossRef
94.
go back to reference Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414PubMedCrossRef Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414PubMedCrossRef
95.
go back to reference Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332PubMedCrossRef Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332PubMedCrossRef
96.
go back to reference Moher D, Hopewell S, Schulz KF et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869PubMedCrossRef Moher D, Hopewell S, Schulz KF et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869PubMedCrossRef
97.
go back to reference Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189PubMed Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189PubMed
98.
go back to reference Brix G, Griebel J, Kiessling F, Wenz F (2010) Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 37:S30–S51PubMedCrossRef Brix G, Griebel J, Kiessling F, Wenz F (2010) Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 37:S30–S51PubMedCrossRef
Metadata
Title
Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging
Authors
M. O. Leach
B. Morgan
P. S. Tofts
D. L. Buckley
W. Huang
M. A. Horsfield
T. L. Chenevert
D. J. Collins
A. Jackson
D. Lomas
B. Whitcher
L. Clarke
R. Plummer
I. Judson
R. Jones
R. Alonzi
T. Brunner
D. M. Koh
P. Murphy
J. C. Waterton
G. Parker
M. J. Graves
T. W. J. Scheenen
T. W. Redpath
M. Orton
G. Karczmar
H. Huisman
J. Barentsz
A. Padhani
on behalf of the Experimental Cancer Medicine Centres Imaging Network Steering Committee
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
European Radiology / Issue 7/2012
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2446-x

Other articles of this Issue 7/2012

European Radiology 7/2012 Go to the issue