Skip to main content
Top
Published in: European Radiology 3/2013

01-03-2013 | Computed Tomography

Diagnostic accuracy of 128-slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols

Authors: Lisan A. Neefjes, Alexia Rossi, Tessa S. S. Genders, Koen Nieman, Stella L. Papadopoulou, Anoeshka S. Dharampal, Carl J. Schultz, Annick C. Weustink, Marcel L. Dijkshoorn, Gert-Jan R. ten Kate, Admir Dedic, Marcel van Straten, Filippo Cademartiri, M. G. Myriam Hunink, Gabriël P. Krestin, Pim J. de Feyter, Nico R. Mollet

Published in: European Radiology | Issue 3/2013

Login to get access

Abstract

Objectives

To compare the diagnostic performance and radiation exposure of 128-slice dual-source CT coronary angiography (CTCA) protocols to detect coronary stenosis with more than 50 % lumen obstruction.

Methods

We prospectively included 459 symptomatic patients referred for CTCA. Patients were randomized between high-pitch spiral vs. narrow-window sequential CTCA protocols (heart rate below 65 bpm, group A), or between wide-window sequential vs. retrospective spiral protocols (heart rate above 65 bpm, group B). Diagnostic performance of CTCA was compared with quantitative coronary angiography in 267 patients.

Results

In group A (231 patients, 146 men, mean heart rate 58 ± 7 bpm), high-pitch spiral CTCA yielded a lower per-segment sensitivity compared to sequential CTCA (89 % vs. 97 %, P = 0.01). Specificity, PPV and NPV were comparable (95 %, 62 %, 99 % vs. 96 %, 73 %, 100 %, P > 0.05) but radiation dose was lower (1.16 ± 0.60 vs. 3.82 ± 1.65 mSv, P < 0.001). In group B (228 patients, 132 men, mean heart rate 75 ± 11 bpm), per-segment sensitivity, specificity, PPV and NPV were comparable (94 %, 95 %, 67 %, 99 % vs. 92 %, 95 %, 66 %, 99 %, P > 0.05). Radiation dose of sequential CTCA was lower compared to retrospective CTCA (6.12 ± 2.58 vs. 8.13 ± 4.52 mSv, P < 0.001). Diagnostic performance was comparable in both groups.

Conclusion

Sequential CTCA should be used in patients with regular heart rates using 128-slice dual-source CT, providing optimal diagnostic accuracy with as low as reasonably achievable (ALARA) radiation dose.

Key Points

128-slice dual-source CT coronary angiography offers several different acquisition protocols.
Randomized comparison of protocols reveals an optimal protocol selection strategy.
Appropriate CTCA protocol selection lowers radiation dose, while maintaining high quality.
CTCA protocol selection should be based on individual patient characteristics.
A prospective sequential protocol is preferred for CTCA.
Literature
1.
go back to reference von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420 von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420
2.
go back to reference Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143 Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143
3.
go back to reference Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428PubMedCrossRef Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428PubMedCrossRef
4.
go back to reference Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794PubMedCrossRef Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794PubMedCrossRef
5.
go back to reference Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246:384–393PubMedCrossRef Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246:384–393PubMedCrossRef
6.
go back to reference Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894PubMedCrossRef Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894PubMedCrossRef
7.
go back to reference Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRef Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRef
8.
go back to reference Gerber TC, Carr JJ, Arai AE et al (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119:1056–1065PubMedCrossRef Gerber TC, Carr JJ, Arai AE et al (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119:1056–1065PubMedCrossRef
9.
go back to reference Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65:859–867PubMedCrossRef Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65:859–867PubMedCrossRef
10.
go back to reference Bischoff B, Hein F, Meyer T et al (2010) Comparison of sequential and helical scanning for radiation dose and image quality: results of the Prospective Multicenter Study on Radiation Dose Estimates of Cardiac CT Angiography (PROTECTION) I Study. AJR 194:1495–1499PubMedCrossRef Bischoff B, Hein F, Meyer T et al (2010) Comparison of sequential and helical scanning for radiation dose and image quality: results of the Prospective Multicenter Study on Radiation Dose Estimates of Cardiac CT Angiography (PROTECTION) I Study. AJR 194:1495–1499PubMedCrossRef
11.
go back to reference Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3:1113–1123PubMedCrossRef Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3:1113–1123PubMedCrossRef
12.
go back to reference Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224PubMedCrossRef Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224PubMedCrossRef
13.
go back to reference Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21:1635–1642PubMedCrossRef Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21:1635–1642PubMedCrossRef
14.
go back to reference Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Hear J 31:340–346CrossRef Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Hear J 31:340–346CrossRef
15.
go back to reference Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938PubMedCrossRef Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938PubMedCrossRef
16.
go back to reference Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRef Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRef
17.
go back to reference Sommer WH, Albrecht E, Bamberg F et al (2010) Feasibility and radiation dose of high-pitch acquisition protocols in patients undergoing dual-source cardiac CT. AJR 195:1306–1312PubMedCrossRef Sommer WH, Albrecht E, Bamberg F et al (2010) Feasibility and radiation dose of high-pitch acquisition protocols in patients undergoing dual-source cardiac CT. AJR 195:1306–1312PubMedCrossRef
18.
go back to reference Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol 19:2357–2362PubMedCrossRef Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol 19:2357–2362PubMedCrossRef
19.
go back to reference Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRef Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRef
20.
go back to reference Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedCrossRef Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedCrossRef
22.
go back to reference Begg CB, Greenes RA (1983) Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39:207–215PubMedCrossRef Begg CB, Greenes RA (1983) Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39:207–215PubMedCrossRef
23.
go back to reference Hunink MG, Polak JF, Barlan MM, O’Leary DH (1993) Detection and quantification of carotid artery stenosis: efficacy of various Doppler velocity parameters. AJR 160:619–625PubMed Hunink MG, Polak JF, Barlan MM, O’Leary DH (1993) Detection and quantification of carotid artery stenosis: efficacy of various Doppler velocity parameters. AJR 160:619–625PubMed
24.
go back to reference Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639PubMed Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639PubMed
25.
go back to reference Achenbach S, Goroll T, Seltmann M et al (2011) Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging 4:328–337PubMedCrossRef Achenbach S, Goroll T, Seltmann M et al (2011) Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging 4:328–337PubMedCrossRef
26.
go back to reference Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817PubMedCrossRef Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817PubMedCrossRef
27.
go back to reference Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243PubMedCrossRef Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243PubMedCrossRef
28.
go back to reference Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR 195:655–660PubMedCrossRef Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR 195:655–660PubMedCrossRef
Metadata
Title
Diagnostic accuracy of 128-slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols
Authors
Lisan A. Neefjes
Alexia Rossi
Tessa S. S. Genders
Koen Nieman
Stella L. Papadopoulou
Anoeshka S. Dharampal
Carl J. Schultz
Annick C. Weustink
Marcel L. Dijkshoorn
Gert-Jan R. ten Kate
Admir Dedic
Marcel van Straten
Filippo Cademartiri
M. G. Myriam Hunink
Gabriël P. Krestin
Pim J. de Feyter
Nico R. Mollet
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 3/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2663-3

Other articles of this Issue 3/2013

European Radiology 3/2013 Go to the issue