Skip to main content
Top
Published in: European Radiology 1/2013

01-01-2013 | Oncology

T2 weighted signal intensity evolution may predict pathological complete response after treatment for rectal cancer

Authors: Ewelina Kluza, Esther D. Rozeboom, Monique Maas, Milou Martens, Doenja M. J. Lambregts, Jos Slenter, Geerard L. Beets, Regina G. H. Beets-Tan

Published in: European Radiology | Issue 1/2013

Login to get access

Abstract

Objectives

To determine the diagnostic value of T2-weighted signal intensity evolution in the tumour for detection of complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer.

Methods

Thirty-nine patients diagnosed with locally advanced adenocarcinoma and treated with chemoradiotherapy (CRT), followed by surgery, underwent magnetic resonance imaging (MRI) before and after CRT on 1.5-T MRI using T2-weighted fast spin-echo (FSE) imaging. The relative T2-weighted signal intensity (rT2wSI) distribution in the tumour and post-CRT residual tissue was characterised by means of the descriptive statistical parameters, such as the mean, 95th percentile and standard deviation (SD). Receiver operating characteristic curves were used to determine the diagnostic potential of the CRT-induced alterations (Δ) in rT2wSI descriptives. The tumour regression grade (TRG) served as a histopathological reference standard.

Results

CRT induced a significant decrease of approximately 50% in all rT2wSI descriptives in complete responders (TRG1). This drop was significantly larger than for incomplete response groups (TRG2–TRG4). The ΔrT2wSI descriptives produced a high diagnostic performance for identification of complete responders, e.g. Δ95th percentile, ΔSD and Δmean resulted in accuracy of 92%, 90% and 82%, respectively.

Conclusions

Quantitative assessment of the CRT-induced changes in the tumour T2-weighted signal intensity provides high diagnostic performance for selection of complete responders.

Key Points

T2 weighted MRI helps predict response after chemoradiotherapy for rectal cancer.
Residual tumour and chemoradiotherapy-induced fibrosis have different T2 relaxation properties.
T2-weighted signal intensity evolution is a promising non-invasive marker of therapeutic response.
A pathologically complete response is associated with the largest signal intensity drop.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740PubMedCrossRef Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740PubMedCrossRef
2.
go back to reference Valentini V, Aristei C, Glimelius B et al (2009) Multidisciplinary Rectal Cancer Management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol 92:148–163PubMedCrossRef Valentini V, Aristei C, Glimelius B et al (2009) Multidisciplinary Rectal Cancer Management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol 92:148–163PubMedCrossRef
3.
go back to reference Guillem JG, Chessin DB, Cohen AM et al (2005) Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg 241:829–836, discussion 836-828PubMedCrossRef Guillem JG, Chessin DB, Cohen AM et al (2005) Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg 241:829–836, discussion 836-828PubMedCrossRef
4.
go back to reference Ruo L, Tickoo S, Klimstra DS et al (2002) Long-term prognostic significance of extent of rectal cancer response to preoperative radiation and chemotherapy. Ann Surg 236:75–81PubMedCrossRef Ruo L, Tickoo S, Klimstra DS et al (2002) Long-term prognostic significance of extent of rectal cancer response to preoperative radiation and chemotherapy. Ann Surg 236:75–81PubMedCrossRef
5.
go back to reference Rodel C, Martus P, Papadoupolos T et al (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23:8688–8696PubMedCrossRef Rodel C, Martus P, Papadoupolos T et al (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23:8688–8696PubMedCrossRef
6.
go back to reference O'Neill BD, Brown G, Heald RJ, Cunningham D, Tait DM (2007) Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol 8:625–633PubMedCrossRef O'Neill BD, Brown G, Heald RJ, Cunningham D, Tait DM (2007) Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol 8:625–633PubMedCrossRef
7.
go back to reference Borschitz T, Wachtlin D, Mohler M, Schmidberger H, Junginger T (2008) Neoadjuvant chemoradiation and local excision for T2-3 rectal cancer. Ann Surg Oncol 15:712–720PubMedCrossRef Borschitz T, Wachtlin D, Mohler M, Schmidberger H, Junginger T (2008) Neoadjuvant chemoradiation and local excision for T2-3 rectal cancer. Ann Surg Oncol 15:712–720PubMedCrossRef
8.
go back to reference Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844PubMedCrossRef Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844PubMedCrossRef
9.
go back to reference Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240:711–717, discussion 717-718PubMed Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240:711–717, discussion 717-718PubMed
10.
go back to reference Maas M, Beets-Tan RG, Lambregts DM et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640PubMedCrossRef Maas M, Beets-Tan RG, Lambregts DM et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640PubMedCrossRef
11.
go back to reference Barbaro B, Vitale R, Leccisotti L et al (2010) Restaging locally advanced rectal cancer with MR imaging after chemoradiation therapy. Radiographics 30:699–716PubMedCrossRef Barbaro B, Vitale R, Leccisotti L et al (2010) Restaging locally advanced rectal cancer with MR imaging after chemoradiation therapy. Radiographics 30:699–716PubMedCrossRef
12.
go back to reference Beets-Tan RG, Beets GL, Vliegen RF et al (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357:497–504PubMedCrossRef Beets-Tan RG, Beets GL, Vliegen RF et al (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357:497–504PubMedCrossRef
13.
go back to reference Dresen RC, Beets GL, Rutten HJ et al (2009) Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part I. Are we able to predict tumor confined to the rectal wall? Radiology 252:71–80PubMedCrossRef Dresen RC, Beets GL, Rutten HJ et al (2009) Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part I. Are we able to predict tumor confined to the rectal wall? Radiology 252:71–80PubMedCrossRef
14.
go back to reference Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250:730–739PubMedCrossRef Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250:730–739PubMedCrossRef
15.
go back to reference Marijnen CA, Kapiteijn E, van de Velde CJ et al (2002) Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 20:817–825PubMedCrossRef Marijnen CA, Kapiteijn E, van de Velde CJ et al (2002) Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 20:817–825PubMedCrossRef
16.
go back to reference Kuo LJ, Chern MC, Tsou MH et al (2005) Interpretation of magnetic resonance imaging for locally advanced rectal carcinoma after preoperative chemoradiation therapy. Dis Colon Rectum 48:23–28PubMedCrossRef Kuo LJ, Chern MC, Tsou MH et al (2005) Interpretation of magnetic resonance imaging for locally advanced rectal carcinoma after preoperative chemoradiation therapy. Dis Colon Rectum 48:23–28PubMedCrossRef
17.
go back to reference Patel UB, Taylor F, Blomqvist L et al (2011) Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol 29:3753–3760PubMedCrossRef Patel UB, Taylor F, Blomqvist L et al (2011) Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol 29:3753–3760PubMedCrossRef
18.
go back to reference Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18:2224–2231PubMedCrossRef Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18:2224–2231PubMedCrossRef
19.
go back to reference Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686PubMedCrossRef Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686PubMedCrossRef
20.
go back to reference Shapiro SSWMB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611 Shapiro SSWMB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611
21.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef
22.
go back to reference Stollfuss JC, Becker K, Sendler A et al (2006) Rectal carcinoma: high-spatial-resolution MR imaging and T2 quantification in rectal cancer specimens. Radiology 241:132–141PubMedCrossRef Stollfuss JC, Becker K, Sendler A et al (2006) Rectal carcinoma: high-spatial-resolution MR imaging and T2 quantification in rectal cancer specimens. Radiology 241:132–141PubMedCrossRef
23.
go back to reference Milot L, Guindi M, Gallinger S et al (2010) MR imaging correlates of intratumoral tissue types within colorectal liver metastases: a high-spatial-resolution fresh ex vivo radiologic-pathologic correlation study. Radiology 254:747–754PubMedCrossRef Milot L, Guindi M, Gallinger S et al (2010) MR imaging correlates of intratumoral tissue types within colorectal liver metastases: a high-spatial-resolution fresh ex vivo radiologic-pathologic correlation study. Radiology 254:747–754PubMedCrossRef
24.
25.
go back to reference Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRef Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRef
26.
go back to reference Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393PubMed Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393PubMed
27.
go back to reference Kim SH, Lee JM, Hong SH et al (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253:116–125PubMedCrossRef Kim SH, Lee JM, Hong SH et al (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253:116–125PubMedCrossRef
28.
go back to reference Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233PubMedCrossRef Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233PubMedCrossRef
29.
go back to reference Kim SH, Lee JY, Lee JM, Han JK, Choi BI (2011) Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol 21:987–995PubMedCrossRef Kim SH, Lee JY, Lee JM, Han JK, Choi BI (2011) Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol 21:987–995PubMedCrossRef
30.
go back to reference de Vries A, Griebel J, Kremser C et al (2000) Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 217:385–391PubMed de Vries A, Griebel J, Kremser C et al (2000) Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 217:385–391PubMed
31.
go back to reference George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636PubMedCrossRef George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636PubMedCrossRef
32.
go back to reference de Lussanet QG, Backes WH, Griffioen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 63:1309–1315PubMedCrossRef de Lussanet QG, Backes WH, Griffioen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 63:1309–1315PubMedCrossRef
33.
go back to reference Gollub MJ, Gultekin DH, Akin O et al (2011) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22:821–831PubMedCrossRef Gollub MJ, Gultekin DH, Akin O et al (2011) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22:821–831PubMedCrossRef
34.
go back to reference Lambregts DM, Beets GL, Maas M et al (2011) Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 21:2567–2574PubMedCrossRef Lambregts DM, Beets GL, Maas M et al (2011) Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 21:2567–2574PubMedCrossRef
Metadata
Title
T2 weighted signal intensity evolution may predict pathological complete response after treatment for rectal cancer
Authors
Ewelina Kluza
Esther D. Rozeboom
Monique Maas
Milou Martens
Doenja M. J. Lambregts
Jos Slenter
Geerard L. Beets
Regina G. H. Beets-Tan
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 1/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2578-z

Other articles of this Issue 1/2013

European Radiology 1/2013 Go to the issue