Skip to main content
Top
Published in: European Radiology 8/2007

01-08-2007 | Cardiac

Strategies for reduction of radiation dose in cardiac multislice CT

Authors: Jean-François Paul, Hicham T. Abada

Published in: European Radiology | Issue 8/2007

Login to get access

Abstract

Because cardiac computed tomography (CT) (mainly coronary CT angiography) is a very promising technique, used more and more for coronary artery evaluation, the benefits and risks of this new low-invasive technique must be balanced. Radiation dose is a major concern for coronary CT angiography, especially in case of repeated examinations or in particular subgroups of patients (for example young female patients). Radiation dose to patient tends to increase from 16- to 64-slice CT. Radiation exposure in ECG-gated acquisitions may reach up to 40 mSv; considerable differences are attributable to the performance of CT machines, to technical dose-sparing tools, but also to radiological habits. Setting radiation dose at the lowest level possible should be a constant goal for the radiologist. Current technological tools are detailed in regard to their efficiency. Optimisation is necessary, by a judicious use of technological tools and also by individual adaptation of kV or mAs. This paper reviews the different current strategies for radiation dose reduction, keeping image quality constant. Data from the literature are discussed, and future technological developments are considered in regards to radiation dose reduction. The particular case of paediatric patients with congenital heart disease is also addressed.
Literature
1.
go back to reference Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRef Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRef
2.
go back to reference Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRef Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRef
3.
go back to reference Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRef Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRef
4.
go back to reference Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152PubMedCrossRef Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152PubMedCrossRef
5.
go back to reference Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRef Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRef
6.
go back to reference Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRef Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRef
7.
go back to reference Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys 32:1621–1629PubMedCrossRef Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys 32:1621–1629PubMedCrossRef
8.
go back to reference Poll LW, Cohnen M, Brachten S, Ewen K, Modder U (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174:1500–1505PubMed Poll LW, Cohnen M, Brachten S, Ewen K, Modder U (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174:1500–1505PubMed
9.
go back to reference Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385PubMedCrossRef Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385PubMedCrossRef
10.
go back to reference Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972PubMedCrossRef Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972PubMedCrossRef
11.
go back to reference Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328PubMedCrossRef Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328PubMedCrossRef
12.
go back to reference d’Agostino AG, Remy-Jardin M, Khalil C et al (2006) Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients. Eur Radiol 16:2137–2146PubMedCrossRef d’Agostino AG, Remy-Jardin M, Khalil C et al (2006) Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients. Eur Radiol 16:2137–2146PubMedCrossRef
13.
go back to reference Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M (2002) A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol 75:140–150PubMed Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M (2002) A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol 75:140–150PubMed
14.
go back to reference Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13:2560–2566PubMedCrossRef Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13:2560–2566PubMedCrossRef
15.
go back to reference Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRef Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRef
16.
go back to reference Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRef Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRef
17.
go back to reference Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:S387–S390PubMedCrossRef Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:S387–S390PubMedCrossRef
18.
go back to reference Hohl C, Muhlenbruch G, Wildberger JE et al (2006) Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol 1–6 Hohl C, Muhlenbruch G, Wildberger JE et al (2006) Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol 1–6
19.
go back to reference Geleijns J, Salvado Artells M, Veldkamp WJ, Lopez Tortosa M, Calzado Cantera A (2006) Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol 16:2334–2340PubMedCrossRef Geleijns J, Salvado Artells M, Veldkamp WJ, Lopez Tortosa M, Calzado Cantera A (2006) Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol 16:2334–2340PubMedCrossRef
20.
go back to reference Menzel H, Schibilla H, Teunen D (2000) European guidelines on quality criteria for computed tomography. Luxembourg: European commission. Publication No. EUR 16262 EN Menzel H, Schibilla H, Teunen D (2000) European guidelines on quality criteria for computed tomography. Luxembourg: European commission. Publication No. EUR 16262 EN
21.
go back to reference Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845PubMedCrossRef Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845PubMedCrossRef
22.
go back to reference Gerber TC, Kuzo RS, Morin RL (2005) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21:165–176PubMedCrossRef Gerber TC, Kuzo RS, Morin RL (2005) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21:165–176PubMedCrossRef
23.
go back to reference Trabold T, Buchgeister M, Kuttner A et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 175:1051–1055PubMed Trabold T, Buchgeister M, Kuttner A et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 175:1051–1055PubMed
24.
go back to reference Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833PubMedCrossRef Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833PubMedCrossRef
25.
go back to reference Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404PubMedCrossRef Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404PubMedCrossRef
26.
go back to reference Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047PubMedCrossRef Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047PubMedCrossRef
27.
go back to reference Paul JF, Wartski M, Caussin C et al (2005) Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience. Radiology 236:485–489PubMedCrossRef Paul JF, Wartski M, Caussin C et al (2005) Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience. Radiology 236:485–489PubMedCrossRef
28.
go back to reference Brodoefel H, Klumpp B, Reimann A et al (2006) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol DOI 10.1007/s00330-006-0334-y Brodoefel H, Klumpp B, Reimann A et al (2006) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol DOI 10.​1007/​s00330-006-0334-y
29.
go back to reference Paul JF, Lambert V, Losay J et al (2002) Three-dimensional multislice CT scanner: value in patients with pulmonary atresia with septal defect. Arch Mal Coeur Vaiss 95:427–432PubMed Paul JF, Lambert V, Losay J et al (2002) Three-dimensional multislice CT scanner: value in patients with pulmonary atresia with septal defect. Arch Mal Coeur Vaiss 95:427–432PubMed
30.
go back to reference Gilkeson RC, Ciancibello L, Zahka K (2003) Pictorial essay. Multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR Am J Roentgenol 180:973–980PubMed Gilkeson RC, Ciancibello L, Zahka K (2003) Pictorial essay. Multidetector CT evaluation of congenital heart disease in pediatric and adult patients. AJR Am J Roentgenol 180:973–980PubMed
31.
go back to reference Westra SJ, Hill JA, Alejos JC, Galindo A, Boechat MI, Laks H (1999) Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol 173:109–115PubMed Westra SJ, Hill JA, Alejos JC, Galindo A, Boechat MI, Laks H (1999) Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol 173:109–115PubMed
32.
go back to reference Goo HW, Park IS, Ko JK et al (2005) Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol 35:792–798PubMedCrossRef Goo HW, Park IS, Ko JK et al (2005) Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol 35:792–798PubMedCrossRef
33.
go back to reference Paul JF, Abada HT, Sigal-Cinqualbre A (2004) Should low-kilovoltage chest CT protocols be the rule for pediatric patients? AJR Am J Roentgenol 183:1172, author reply 1172PubMed Paul JF, Abada HT, Sigal-Cinqualbre A (2004) Should low-kilovoltage chest CT protocols be the rule for pediatric patients? AJR Am J Roentgenol 183:1172, author reply 1172PubMed
35.
go back to reference Westra SJ, Hurteau J, Galindo A, McNitt-Gray MF, Boechat MI, Laks H (1999) Cardiac electron-beam CT in children undergoing surgical repair for pulmonary atresia. Radiology 213:502–512PubMed Westra SJ, Hurteau J, Galindo A, McNitt-Gray MF, Boechat MI, Laks H (1999) Cardiac electron-beam CT in children undergoing surgical repair for pulmonary atresia. Radiology 213:502–512PubMed
Metadata
Title
Strategies for reduction of radiation dose in cardiac multislice CT
Authors
Jean-François Paul
Hicham T. Abada
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
European Radiology / Issue 8/2007
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-007-0584-3

Other articles of this Issue 8/2007

European Radiology 8/2007 Go to the issue

Hepatobiliary-Pancreas

Imaging of Budd-Chiari syndrome