Skip to main content
Top
Published in: Rheumatology International 2/2013

01-02-2013 | Original Article

Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model

Authors: Pingping Chen-An, Kim Vietz Andreassen, Kim Henriksen, Morten Asser Karsdal, Anne-Christine Bay-Jensen

Published in: Rheumatology International | Issue 2/2013

Login to get access

Abstract

Articular cartilage deterioration, which includes cartilage degradation and chondrocyte hypertrophy, is a hallmark of degenerative joint diseases (DJD). Chondrocyte hypertrophy is initiated in the deep layer of the cartilage; thus, a robust explants model for investigation of hypertrophy should include this zone. The aim of this study was to characterize and investigate the hypertrophy-promoting potential of different endogenous factors on an ex vivo articular cartilage model. The full-depth cartilage explants were harvested from bovine femoral condyle and cultured for 13 days in different conditions: 10 ng/ml oncostatin M + 20 ng/ml TNF-α; 100 ng/ml IGF1; 10–100 ng/ml bFGF; 10–100 ng/ml BMP2; 50 μg/ml ascorbic acid in combination with 10 mM β-glycerophosphate; and 20–100 ng/ml triiodothyronine. The cellular activity and morphology, degradation, formation and calcification, and expression level of hypertrophic markers were investigated. The hypertrophic factors tested all induced cellular activity and marked morphological changes starting at day 4, however, not in a synchronized manner. Both cartilage degradation and formation were induced by T3 (P < 0.05). Only T3 had a full hypertrophic gene expression profile (P < 0.05). We developed and characterized a novel model for investigation of chondrocyte hypertrophy. We speculated that this can become an important investigatory tool for investigation of matrix turnover, chondrocyte hypertrophy and cartilage calcification that are associated with DJD pathogenesis.
Literature
1.
go back to reference Abramson S, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227–235PubMedCrossRef Abramson S, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227–235PubMedCrossRef
2.
go back to reference Hayami T, Pickarski M, Zhuo Y et al (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243 Hayami T, Pickarski M, Zhuo Y et al (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243
3.
go back to reference Davidson R, Waters J, Kevorkian L et al (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8:124–133CrossRef Davidson R, Waters J, Kevorkian L et al (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8:124–133CrossRef
4.
go back to reference Bay-Jensen AC, Hoegh-Madsen S, Dam E et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30:435–442 Bay-Jensen AC, Hoegh-Madsen S, Dam E et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30:435–442
5.
go back to reference Pritzker KPH, Gay S, Jimenez SA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartil 14:13–29 Pritzker KPH, Gay S, Jimenez SA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartil 14:13–29
6.
go back to reference Pufe T, Petersen W, Tillmann B et al (2001) Splice variants VEGF121 and VEGF165 of the angiogenic peptide vascular endothelial cell growth factor are expressed in the synovial tissue of patients with rheumatoid arthritis. J Rheumatol 28:1482–1485 Pufe T, Petersen W, Tillmann B et al (2001) Splice variants VEGF121 and VEGF165 of the angiogenic peptide vascular endothelial cell growth factor are expressed in the synovial tissue of patients with rheumatoid arthritis. J Rheumatol 28:1482–1485
7.
go back to reference Hiroshi K (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6 Hiroshi K (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6
8.
go back to reference Jean-Marc B, Didier P, Farida D et al (2010) Cellular senescence is a common characteristic shared by preneoplastic and osteo-arthritic tissue. Open Rheumatol J 4:10–14 Jean-Marc B, Didier P, Farida D et al (2010) Cellular senescence is a common characteristic shared by preneoplastic and osteo-arthritic tissue. Open Rheumatol J 4:10–14
9.
go back to reference Pullig O, Weseloh G, Ronneberger D-L, Käkönen S-M et al (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 67:230–240PubMedCrossRef Pullig O, Weseloh G, Ronneberger D-L, Käkönen S-M et al (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 67:230–240PubMedCrossRef
10.
go back to reference Steffan DB, Eline PS, Ingrid M (2008) New insights into osteoarthritis: recent susceptibility genes in osteoarthritis. Curr Opin Rheumatol 20:553–559CrossRef Steffan DB, Eline PS, Ingrid M (2008) New insights into osteoarthritis: recent susceptibility genes in osteoarthritis. Curr Opin Rheumatol 20:553–559CrossRef
11.
go back to reference Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62PubMedCrossRef Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62PubMedCrossRef
12.
go back to reference Minina E, Wenzel HM, Kreschel C et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534 Minina E, Wenzel HM, Kreschel C et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534
13.
go back to reference Grimsrud CD, Romano PR, D’Souza M et al (2001) BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res 19:18–25PubMedCrossRef Grimsrud CD, Romano PR, D’Souza M et al (2001) BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res 19:18–25PubMedCrossRef
14.
go back to reference Steinert A, Proffen B, Kunz M et al (2009) Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther 11:148–162CrossRef Steinert A, Proffen B, Kunz M et al (2009) Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther 11:148–162CrossRef
15.
go back to reference Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449 Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449
16.
go back to reference Luisa L, Zeling N, Eleanor BG et al (2009) Thyroid hormone treatment of cultured chondrocytes mimics in vivo stimulation of collagen X mRNA by increasing BMP 4 expression. J Cell Physiol 219:595–605CrossRef Luisa L, Zeling N, Eleanor BG et al (2009) Thyroid hormone treatment of cultured chondrocytes mimics in vivo stimulation of collagen X mRNA by increasing BMP 4 expression. J Cell Physiol 219:595–605CrossRef
17.
go back to reference Wang L, Shao YY, Ballock RT (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J Bone Miner Res 22:1988–1995PubMedCrossRef Wang L, Shao YY, Ballock RT (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J Bone Miner Res 22:1988–1995PubMedCrossRef
18.
go back to reference Yoshinori I, Brian RG, Roy EW et al (1998) Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 13:1398–1411CrossRef Yoshinori I, Brian RG, Roy EW et al (1998) Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 13:1398–1411CrossRef
19.
go back to reference Jiang J, Leong NL, Mung JC et al (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis Cartil 16:70–82 Jiang J, Leong NL, Mung JC et al (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis Cartil 16:70–82
20.
go back to reference Emily EC, John PF (2010) Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 38:3371–3388CrossRef Emily EC, John PF (2010) Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 38:3371–3388CrossRef
21.
go back to reference Sumer EU, Sondergaard BC, Rousseau JC et al (2007) MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and glycosaminoglycan assays. Osteoarthritis Cartil 15:212–221 Sumer EU, Sondergaard BC, Rousseau JC et al (2007) MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and glycosaminoglycan assays. Osteoarthritis Cartil 15:212–221
22.
go back to reference Wang B, Chen P, Jensen AC et al (2009) Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments. BMC Res Notes 2:259–266PubMedCrossRef Wang B, Chen P, Jensen AC et al (2009) Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments. BMC Res Notes 2:259–266PubMedCrossRef
23.
go back to reference Bay-Jensen AC, Liu Q, Byrjalsen I et al (2011) Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM–Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 44:423–429PubMedCrossRef Bay-Jensen AC, Liu Q, Byrjalsen I et al (2011) Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM–Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 44:423–429PubMedCrossRef
24.
go back to reference Teixeira CC, Hatori M, Leboy PS et al (1995) A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif Tissue Int 56:252–256PubMedCrossRef Teixeira CC, Hatori M, Leboy PS et al (1995) A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif Tissue Int 56:252–256PubMedCrossRef
25.
go back to reference Sondergaard BC, Wulf H, Henriksen K et al (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartil 14:759–768 Sondergaard BC, Wulf H, Henriksen K et al (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartil 14:759–768
26.
go back to reference Fundel K, Haag J, Gebhard PM et al (2008) Normalization strategies for mRNA expression data in cartilage research. Osteoarthritis Cartil 16:947–955 Fundel K, Haag J, Gebhard PM et al (2008) Normalization strategies for mRNA expression data in cartilage research. Osteoarthritis Cartil 16:947–955
27.
go back to reference Sondergaard BC, Henriksen K, Wulf H et al (2006) Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartil 14:738–748 Sondergaard BC, Henriksen K, Wulf H et al (2006) Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartil 14:738–748
28.
go back to reference Johansson N, Saarialho-Kere U, Airola K et al (1997) Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Cell 208:387–397 Johansson N, Saarialho-Kere U, Airola K et al (1997) Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Cell 208:387–397
29.
go back to reference D’Angelo M, Yan Z, Nooreyazdan M et al (2000) MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem 77:678–693PubMedCrossRef D’Angelo M, Yan Z, Nooreyazdan M et al (2000) MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem 77:678–693PubMedCrossRef
30.
go back to reference Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236PubMedCrossRef Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236PubMedCrossRef
31.
go back to reference Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72 Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72
32.
go back to reference Matukas VJ, Krikos GA (1968) Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J Cell Biol 39:43–48 Matukas VJ, Krikos GA (1968) Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J Cell Biol 39:43–48
33.
go back to reference Wroblewski J, Edwall-Arvidsson C (1995) Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 10:735–742PubMedCrossRef Wroblewski J, Edwall-Arvidsson C (1995) Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 10:735–742PubMedCrossRef
34.
go back to reference van Beuningen HM, Glansbeek HL, van der Kraan PM et al (1998) Differential effects of local application of BMP-2 or TGF-[beta]1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartil 6:306–317CrossRef van Beuningen HM, Glansbeek HL, van der Kraan PM et al (1998) Differential effects of local application of BMP-2 or TGF-[beta]1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartil 6:306–317CrossRef
35.
go back to reference Alini M, Kofsky Y, Wu W et al (1996) In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J Bone Miner Res 11:105–113PubMedCrossRef Alini M, Kofsky Y, Wu W et al (1996) In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J Bone Miner Res 11:105–113PubMedCrossRef
36.
go back to reference Alini M, Carey D, Hirata S et al (1994) Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of type X collagen synthesis and net loss of collagen when calcification is initiated. J Bone Miner Res 9:1077–1087PubMedCrossRef Alini M, Carey D, Hirata S et al (1994) Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of type X collagen synthesis and net loss of collagen when calcification is initiated. J Bone Miner Res 9:1077–1087PubMedCrossRef
37.
go back to reference Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Curr Opin Rheumatol 18:537–547PubMedCrossRef Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Curr Opin Rheumatol 18:537–547PubMedCrossRef
38.
go back to reference Vincent T, Hermansson M, Bolton M et al (2002) Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc Natl Acad Sci U S A 99:8259–8264 Vincent T, Hermansson M, Bolton M et al (2002) Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc Natl Acad Sci U S A 99:8259–8264
39.
go back to reference Macias D, Ganan Y, Sampath TK et al (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117 Macias D, Ganan Y, Sampath TK et al (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117
40.
go back to reference Nakase T, Miyaji T, Tomita T et al (2003) Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartil 11:278–284CrossRef Nakase T, Miyaji T, Tomita T et al (2003) Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartil 11:278–284CrossRef
41.
go back to reference Robson H, Siebler T, Stevens DA et al (2000) Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897 Robson H, Siebler T, Stevens DA et al (2000) Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897
42.
go back to reference Meulenbelt I, Min JL, Bos S et al (2008) Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet 17:1867–1875 Meulenbelt I, Min JL, Bos S et al (2008) Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet 17:1867–1875
43.
go back to reference Coe MR, Summers TA, Parsons SJ et al (1992) Matrix mineralization in hypertrophic chondrocyte cultures. Beta glycerophosphate increases type X collagen messenger RNA and the specific activity of pp 60c-src kinase. Bone Miner 18:91–106PubMedCrossRef Coe MR, Summers TA, Parsons SJ et al (1992) Matrix mineralization in hypertrophic chondrocyte cultures. Beta glycerophosphate increases type X collagen messenger RNA and the specific activity of pp 60c-src kinase. Bone Miner 18:91–106PubMedCrossRef
44.
go back to reference Descalzi Cancedda F, Gentili C, Manduca P et al (1992) Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol 117:427–435 Descalzi Cancedda F, Gentili C, Manduca P et al (1992) Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol 117:427–435
Metadata
Title
Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model
Authors
Pingping Chen-An
Kim Vietz Andreassen
Kim Henriksen
Morten Asser Karsdal
Anne-Christine Bay-Jensen
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Rheumatology International / Issue 2/2013
Print ISSN: 0172-8172
Electronic ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-012-2368-6

Other articles of this Issue 2/2013

Rheumatology International 2/2013 Go to the issue