Skip to main content
Log in

Phenotypic Variations in Chondrocyte Subpopulations and Their Response to In Vitro Culture and External Stimuli

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Articular cartilage defects have limited capacity to self-repair, and cost society up to 60 billion dollars annually in both medical treatments and loss of working days. Recent developments in cartilage tissue engineering have resulted in many new products coming to market or entering clinical trials. However, there is a distinct lack of treatments which aim to recreate the complex zonal organization of articular cartilage. Cartilage tissue withstands repetitive strains throughout an individual’s lifetime and provides frictionless movement between joints. The structure and composition of its intricately organized extracellular matrix varies with tissue depth to provide optimal resistance to loading, ensure ease of movement, and integrate with the subchondral bone. Each tissue zone is specially designed to resist the load it experiences, and maximize the tissue properties needed for its location. It is unlikely that a homogenous solution to tissue repair will be able to optimally restore the function of such a heterogeneous tissue. For zonal engineering of articular cartilage to become practical, maintenance of phenotypically stable zonal cell populations must be achieved. The chondrocyte phenotype varies considerably by zone, and it is the activity of these cells that help achieve the structural organization of the tissue. This review provides an examination of literature which has studied variations in cellular phenotype between cartilage zones. By doing so, we have identified critical differences between cell populations and highlighted areas of research which show potential in the field. Current research has made the morphological and metabolic variations between these cell populations clear, but an ideal way of maintaining these differences in vitro culture is yet to be established. Combinations of delivered growth factors, mechanical loading, and layered three-dimensional culture systems all show potential for achieving this goal. Furthermore, differentiation of progenitor cell populations into chondrocyte subpopulations may also hold promise for achieving large numbers of zonal chondrocytes. Success of the field lies in establishing methods of retaining phenotypically stable cell populations for in vitro culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1

Similar content being viewed by others

References

  1. Archer, C. W., and P. Francis-West. The chondrocyte. Int. J. Biochem. Cell Biol. 35:401–404, 2003.

    Article  PubMed  CAS  Google Scholar 

  2. Archer, C. W., J. McDowell, M. T. Bayliss, M. D. Stephens, and G. Bentley. Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J. Cell Sci. 97(Pt 2):361–371, 1990.

    PubMed  Google Scholar 

  3. Armstrong, S. J., R. A. Read, and R. Price. Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach. Osteoarthr. Cartil. 3:25–33, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Aydelotte, M. B., R. R. Greenhill, and K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect. Tissue Res. 18:223–234, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Aydelotte, M. B., and K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18:205–222, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Bae, W. C., V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah. Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties. Osteoarthr. Cartil. 16:841–845, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Bank, R. A., M. T. Bayliss, F. P. Lafeber, A. Maroudas, and J. M. Tekoppele. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem. J. 330(Pt 1):345–351, 1998.

    PubMed  CAS  Google Scholar 

  8. Bjornhart, B., A. Juul, S. Nielsen, M. Zak, P. Svenningsen, and K. Muller. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis: relation to growth and disease activity. J. Rheumatol. 36:1749–1754, 2009.

    Article  PubMed  CAS  Google Scholar 

  9. Chawla, K., T. J. Klein, B. L. Schumacher, K. D. Jadin, B. H. Shah, K. Nakagawa, V. W. Wong, A. C. Chen, K. Masuda, and R. L. Sah. Short-term retention of labeled chondrocyte subpopulations in stratified tissue-engineered cartilaginous constructs implanted in vivo in mini-pigs. Tissue Eng. 13:1525–1537, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, F. H., K. T. Rousche, and R. S. Tuan. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2:373–382, 2006.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, C., E. Conte, N. Pleshko-Camacho, and C. Hidaka. Differences in matrix accumulation and hypertrophy in superficial and deep zone chondrocytes are controlled by bone morphogenetic protein. Matrix Biol. 26:541–553, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Chi, S. S., J. B. Rattner, and J. R. Matyas. Communication between paired chondrocytes in the superficial zone of articular cartilage. J. Anat. 205:363–370, 2004.

    Article  PubMed  Google Scholar 

  13. Chowdhury, T. T., D. L. Bader, and D. A. Lee. Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthr. Cartil. 11:688–696, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke, I. C. Articular cartilage: a review and scanning electron microscope study. 1. The interterritorial fibrillar architecture. J. Bone Jt. Surg. Br. 53:732–750, 1971.

    CAS  Google Scholar 

  15. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Darling, E. M., and K. A. Athanasiou. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res. 322:463–473, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Darling, E. M., J. C. Hu, and K. A. Athanasiou. Zonal and topographical differences in articular cartilage gene expression. J. Orthop. Res. 22:1182–1187, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Darling, E. M., P. E. Pritchett, B. A. Evans, R. Superfine, S. Zauscher, and F. Guilak. Mechanical Properties and Gene Expression of Chondrocytes on Micropatterned Substrates Following Dedifferentiation in Monolayer. Cel. Mol. Bioeng. 2:395–404, 2009.

    Article  CAS  Google Scholar 

  19. Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14:571–579, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Di Cesare, P. E., C. S. Carlson, E. S. Stolerman, N. Hauser, H. Tulli, and M. Paulsson. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J. Orthop. Res. 14:946–955, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Dowthwaite, G. P., J. C. Bishop, S. N. Redman, I. M. Khan, P. Rooney, D. J. Evans, L. Haughton, Z. Bayram, S. Boyer, B. Thomson, M. S. Wolfe, and C. W. Archer. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117:889–897, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Eggli, P. S., E. B. Hunziker, and R. K. Schenk. Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat. Rec. 222:217–227, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Elder, B. D., and K. A. Athanasiou. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthr. Cartil. 17:114–123, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Eleswarapu, S. V., N. D. Leipzig, and K. A. Athanasiou. Gene expression of single articular chondrocytes. Cell Tissue Res. 327:43–54, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Fickert, S., J. Fiedler, and R. E. Brenner. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res. Ther. 6:R422–R432, 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Flannery, C. R., C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem. Biophys. Res. Commun. 254:535–541, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Flechtenmacher, J., K. Huch, E. J. Thonar, J. A. Mollenhauer, S. R. Davies, T. M. Schmid, W. Puhl, T. K. Sampath, M. B. Aydelotte, and K. E. Kuettner. Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum. 39:1896–1904, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Fukuda, K., F. Kumano, M. Takayama, M. Saito, K. Otani, and S. Tanaka. Zonal differences in nitric oxide synthesis by bovine chondrocytes exposed to interleukin-1. Inflamm. Res. 44:434–437, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Gleghorn, J. P., C. S. Lee, M. Cabodi, A. D. Stroock, and L. J. Bonassar. Adhesive properties of laminated alginate gels for tissue engineering of layered structures. J. Biomed. Mater. Res. A 85:611–618, 2008.

    PubMed  Google Scholar 

  30. Guilak, F., L. G. Alexopoulos, M. A. Haider, H. P. Ting-Beall, and L. A. Setton. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Ann. Biomed. Eng. 33:1312–1318, 2005.

    Article  PubMed  Google Scholar 

  31. Hattori, S., C. Oxford, and A. H. Reddi. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem. Biophys. Res. Commun. 358:99–103, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Hauselmann, H. J., R. J. Fernandes, S. S. Mok, T. M. Schmid, J. A. Block, M. B. Aydelotte, K. E. Kuettner, and E. J. Thonar. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci. 107(Pt 1):17–27, 1994.

    PubMed  Google Scholar 

  33. Hauselmann, H. J., J. Flechtenmacher, L. Michal, E. J. Thonar, M. Shinmei, K. E. Kuettner, and M. B. Aydelotte. The superficial layer of human articular cartilage is more susceptible to interleukin-1-induced damage than the deeper layers. Arthritis Rheum. 39:478–488, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Hauselmann, H. J., M. Stefanovic-Racic, B. A. Michel, and C. H. Evans. Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J. Immunol. 160:1444–1448, 1998.

    PubMed  CAS  Google Scholar 

  35. Hayashi, T., E. Abe, T. Yamate, Y. Taguchi, and H. E. Jasin. Nitric oxide production by superficial and deep articular chondrocytes. Arthritis Rheum. 40:261–269, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Hayes, A. J., G. P. Dowthwaite, S. V. Webster, and C. W. Archer. The distribution of Notch receptors and their ligands during articular cartilage development. J. Anat. 202:495–502, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Hidaka, C., C. Cheng, D. Alexandre, M. Bhargava, and P. A. Torzilli. Maturational differences in superficial and deep zone articular chondrocytes. Cell Tissue Res. 323:127–135, 2006.

    Article  PubMed  CAS  Google Scholar 

  38. Hidaka, C., L. R. Goodrich, C. T. Chen, R. F. Warren, R. G. Crystal, and A. J. Nixon. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J. Orthop. Res. 21:573–583, 2003.

    Article  PubMed  CAS  Google Scholar 

  39. Hidaka, C., M. Quitoriano, R. F. Warren, and R. G. Crystal. Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7. J. Orthop. Res. 19:751–758, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Hu, J. C., and K. A. Athanasiou. Chondrocytes from different zones exhibit characteristic differences in high density culture. Connect. Tissue Res. 47:133–140, 2006.

    Article  PubMed  CAS  Google Scholar 

  41. Hu, J. C., and K. A. Athanasiou. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 12:969–979, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Huber, M., S. Trattnig, and F. Lintner. Anatomy, biochemistry, and physiology of articular cartilage. Invest. Radiol. 35:573–580, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Hunziker, E. B., T. M. Quinn, and H. J. Hauselmann. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr. Cartil. 10:564–572, 2002.

    Article  PubMed  CAS  Google Scholar 

  44. Hwang, N. S., S. Varghese, H. J. Lee, P. Theprungsirikul, A. Canver, B. Sharma, and J. Elisseeff. Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett. 581:4172–4178, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Idowu, B. D., M. M. Knight, D. L. Bader, and D. A. Lee. Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose. Histochem. J. 32:165–174, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Jackson, D. W., T. M. Simon, and H. M. Aberman. Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin. Orthop. Relat. Res. 39:S14–S25, 2001.

    Article  Google Scholar 

  47. Jiang, J., N. L. Leong, J. C. Mung, C. Hidaka, and H. H. Lu. Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr. Cartil. 16:70–82, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Kempson, G. E., H. Muir, C. Pollard, and M. Tuke. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim. Biophys. Acta 297:456–472, 1973.

    PubMed  CAS  Google Scholar 

  49. Khalafi, A., T. M. Schmid, C. Neu, and A. H. Reddi. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J. Orthop. Res. 25:293–303, 2007.

    Article  PubMed  CAS  Google Scholar 

  50. Khan, I. M., D. M. Salter, M. T. Bayliss, B. M. Thomson, and C. W. Archer. Expression of clusterin in the superficial zone of bovine articular cartilage. Arthritis Rheum. 44:1795–1799, 2001.

    Article  PubMed  CAS  Google Scholar 

  51. Kim, T. K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartil. 11:653–664, 2003.

    Article  PubMed  Google Scholar 

  52. Klein, T. J., M. Chaudhry, W. C. Bae, and R. L. Sah. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J. Biomech. 40:182–190, 2007.

    Article  PubMed  Google Scholar 

  53. Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue. Eng. B Rev. 15:143–157, 2009.

    Article  CAS  Google Scholar 

  54. Klein, T. J., B. L. Schumacher, T. A. Schmidt, K. W. Li, M. S. Voegtline, K. Masuda, E. J. Thonar, and R. L. Sah. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthr. Cartil. 11:595–602, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Kuettner, K. E. Biochemistry of articular cartilage in health and disease. Clin. Biochem. 25:155–163, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, C. S., J. P. Gleghorn, N. Won Choi, M. Cabodi, A. D. Stroock, and L. J. Bonassar. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993, 2007.

    Article  PubMed  CAS  Google Scholar 

  57. Lee, S. Y., T. Niikura, and A. H. Reddi. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. Tissue Eng. A 14:1799–1808, 2008.

    Article  CAS  Google Scholar 

  58. Lee, D. A., T. Noguchi, S. P. Frean, P. Lees, and D. L. Bader. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37:149–161, 2000.

    PubMed  CAS  Google Scholar 

  59. Lee, D. A., T. Noguchi, M. M. Knight, L. O’Donnell, G. Bentley, and D. L. Bader. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthop. Res. 16:726–733, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Leipzig, N. D., S. V. Eleswarapu, and K. A. Athanasiou. The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes. Osteoarthr. Cartil. 14:1227–1236, 2006.

    Article  PubMed  CAS  Google Scholar 

  61. Li, Z., S. Yao, M. Alini, and S. Grad. Different response of articular chondrocyte subpopulations to surface motion. Osteoarthr. Cartil. 15:1034–1041, 2007.

    Article  PubMed  CAS  Google Scholar 

  62. Lorenzo, P., M. T. Bayliss, and D. Heinegard. A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J. Biol. Chem. 273:23463–23468, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Lu, X. L., and V. C. Mow. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40:193–199, 2008.

    Article  PubMed  Google Scholar 

  64. Malda, J., W. Ten Hoope, W. Schuurman, G. van Osch, R. van Weeren, and W. Dhert. Localization of the potential zonal marker clusterin in native cartilage and in tissue-engineered constructs. Tissue Eng. A 16:897–904, 2010.

    Article  CAS  Google Scholar 

  65. McDevitt, C. A. Biochemistry of articular cartilage. Nature of proteoglycans and collagen of articular cartilage and their role in ageing and in osteoarthrosis. Ann. Rheum. Dis. 32:364–378, 1973.

    Article  PubMed  CAS  Google Scholar 

  66. Min, B. H., H. J. Kim, H. Lim, and S. R. Park. Characterization of subpopulated articular chondrocytes separated by Percoll density gradient. In Vitro Cell Dev. Biol. Anim. 38:35–40, 2002.

    Article  PubMed  Google Scholar 

  67. Mollenhauer, J. A. Perspectives on articular cartilage biology and osteoarthritis. Injury 39(Suppl 1):S5–S12, 2008.

    Article  PubMed  Google Scholar 

  68. Murray, R. C., R. K. Smith, F. M. Henson, and A. Goodship. The distribution of cartilage oligomeric matrix protein (COMP) in equine carpal articular cartilage and its variation with exercise and cartilage deterioration. Vet. J. 162:121–128, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Ng, K. W., G. A. Ateshian, and C. T. Hung. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. A 15:2315–2324, 2009.

    Article  CAS  Google Scholar 

  70. Ng, K. W., C. C. Wang, R. L. Mauck, T. A. Kelly, N. O. Chahine, K. D. Costa, G. A. Ateshian, and C. T. Hung. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23:134–141, 2005.

    Article  PubMed  Google Scholar 

  71. Pelttari, K., A. Wixmerten, and I. Martin. Do we really need cartilage tissue engineering? Swiss. Med. Wkly 139:602–609, 2009.

    PubMed  CAS  Google Scholar 

  72. Penta, K., J. A. Varner, L. Liaw, C. Hidai, R. Schatzman, and T. Quertermous. Del1 induces integrin signaling and angiogenesis by ligation of alphaVbeta3. J. Biol. Chem. 274:11101–11109, 1999.

    Article  PubMed  CAS  Google Scholar 

  73. Pfister, B. E., M. B. Aydelotte, W. Burkhart, K. E. Kuettner, and T. M. Schmid. Del1: a new protein in the superficial layer of articular cartilage. Biochem. Biophys. Res. Commun. 286:268–273, 2001.

    Article  PubMed  CAS  Google Scholar 

  74. Rolauffs, B., J. M. Williams, A. J. Grodzinsky, K. E. Kuettner, and A. A. Cole. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints. J. Struct. Biol. 162:335–344, 2008.

    Article  PubMed  CAS  Google Scholar 

  75. Salminen, H., M. Perala, P. Lorenzo, T. Saxne, D. Heinegard, A. M. Saamanen, and E. Vuorio. Up-regulation of cartilage oligomeric matrix protein at the onset of articular cartilage degeneration in a transgenic mouse model of osteoarthritis. Arthritis Rheum. 43:1742–1748, 2000.

    Article  PubMed  CAS  Google Scholar 

  76. Schinagl, R. M., D. Gurskis, A. C. Chen, and R. L. Sah. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506, 1997.

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt, T. A., B. L. Schumacher, T. J. Klein, M. S. Voegtline, and R. L. Sah. Synthesis of proteoglycan 4 by chondrocyte subpopulations in cartilage explants, monolayer cultures, and resurfaced cartilage cultures. Arthritis Rheum. 50:2849–2857, 2004.

    Article  PubMed  CAS  Google Scholar 

  78. Schumacher, B. L., J. A. Block, T. M. Schmid, M. B. Aydelotte, and K. E. Kuettner. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys. 311:144–152, 1994.

    Article  PubMed  CAS  Google Scholar 

  79. Schumacher, B. L., C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J. Orthop. Res. 17:110–120, 1999.

    Article  PubMed  CAS  Google Scholar 

  80. Schuurman, W., D. Gawlitta, T. J. Klein, W. ten Hoope, M. H. van Rijen, W. J. Dhert, P. R. van Weeren, and J. Malda. Zonal chondrocyte subpopulations reacquire zone-specific characteristics during in vitro redifferentiation. Am. J. Sports Med. 37(Suppl 1):97S–104S, 2009.

    Article  PubMed  Google Scholar 

  81. Sharma, B., C. G. Williams, T. K. Kim, D. Sun, A. Malik, M. Khan, K. Leong, and J. H. Elisseeff. Designing zonal organization into tissue-engineered cartilage. Tissue Eng. 13:405–414, 2007.

    Article  PubMed  CAS  Google Scholar 

  82. Shieh, A. C., and K. A. Athanasiou. Biomechanics of single zonal chondrocytes. J. Biomech. 39:1595–1602, 2006.

    Article  PubMed  Google Scholar 

  83. Siczkowski, M., and F. M. Watt. Subpopulations of chondrocytes from different zones of pig articular cartilage. Isolation, growth and proteoglycan synthesis in culture. J. Cell Sci. 97(Pt 2):349–360, 1990.

    PubMed  CAS  Google Scholar 

  84. Stockwell, R. A. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J. Anat. 109:411–421, 1971.

    PubMed  CAS  Google Scholar 

  85. Takagi, T., S. Takahashi, T. Koshino, R. Okamoto, and H. E. Jasin. Isolation and differential secretion of metalloproteinase by superficial chondrocytes in articular cartilage. Int. Orthop. 22:55–58, 1998.

    Article  PubMed  CAS  Google Scholar 

  86. Ulrich-Vinther, M., M. D. Maloney, E. M. Schwarz, R. Rosier, and R. J. O’Keefe. Articular cartilage biology. J. Am. Acad. Orthop. Surg. 11:421–430, 2003.

    PubMed  Google Scholar 

  87. Ustunel, I., A. M. Ozenci, Z. Sahin, O. Ozbey, N. Acar, G. Tanriover, C. Celik-Ozenci, and R. Demir. The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochem. 110:397–407, 2008.

    Article  PubMed  Google Scholar 

  88. Vanderploeg, E. J., C. G. Wilson, and M. E. Levenston. Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthr. Cartil. 16:1228–1236, 2008.

    Article  PubMed  CAS  Google Scholar 

  89. Vinatier, C., C. Bouffi, C. Merceron, J. Gordeladze, J. M. Brondello, C. Jorgensen, P. Weiss, J. Guicheux, and D. Noel. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr. Stem. Cell Res. Ther. 4:318–329, 2009.

    Article  PubMed  CAS  Google Scholar 

  90. Waldman, S. D., M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J. Orthop. Res. 21:132–138, 2003.

    Article  PubMed  Google Scholar 

  91. Wiseman, M., F. Henson, D. A. Lee, and D. L. Bader. Dynamic compressive strain inhibits nitric oxide synthesis by equine chondrocytes isolated from different areas of the cartilage surface. Equine Vet. J. 35:451–456, 2003.

    Article  PubMed  CAS  Google Scholar 

  92. Wong, M., P. Wuethrich, P. Eggli, and E. Hunziker. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J. Orthop. Res. 14:424–432, 1996.

    Article  PubMed  CAS  Google Scholar 

  93. Yamane, S., E. Cheng, Z. You, and A. H. Reddi. Gene expression profiling of mouse articular and growth plate cartilage. Tissue Eng. 13:2163–2173, 2007.

    Article  PubMed  CAS  Google Scholar 

  94. Yoon, D. M., and J. P. Fisher. Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv. Exp. Med. Biol. 585:67–86, 2006.

    Article  PubMed  CAS  Google Scholar 

  95. Zanetti, M., A. Ratcliffe, and F. M. Watt. Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate. J. Cell Biol. 101:53–59, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CAREER Award to J.P.F. #0448684), Arthritis Foundation (Arthritis Investigator Award to J.P.F.), and the State of Maryland, Maryland Stem Cell Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Fisher.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, E.E., Fisher, J.P. Phenotypic Variations in Chondrocyte Subpopulations and Their Response to In Vitro Culture and External Stimuli. Ann Biomed Eng 38, 3371–3388 (2010). https://doi.org/10.1007/s10439-010-0096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0096-1

Keywords

Navigation