Skip to main content
Top
Published in: Seminars in Immunopathology 2/2020

Open Access 01-04-2020 | Human Immunodeficiency Virus | Review

Epigenetic crosstalk in chronic infection with HIV-1

Authors: Ulrike C Lange, Roxane Verdikt, Amina Ait-Ammar, Carine Van Lint

Published in: Seminars in Immunopathology | Issue 2/2020

Login to get access

Abstract

Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Literature
1.
go back to reference Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M et al (2016) International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 22(8):839–850PubMedPubMedCentral Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M et al (2016) International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 22(8):839–850PubMedPubMedCentral
2.
go back to reference Lewin SR, Rouzioux C (2011) HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS. 25(7):885–897PubMed Lewin SR, Rouzioux C (2011) HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS. 25(7):885–897PubMed
3.
go back to reference Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S et al (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12(8):607–614PubMed Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S et al (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12(8):607–614PubMed
4.
go back to reference WHO (2016) Global health sector strategy on HIV 2016-2021, pp 1–60 WHO (2016) Global health sector strategy on HIV 2016-2021, pp 1–60
5.
go back to reference Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049PubMedPubMedCentral Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049PubMedPubMedCentral
6.
go back to reference Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 155(3):540–551PubMedPubMedCentral Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 155(3):540–551PubMedPubMedCentral
7.
go back to reference Barton K, Hiener B, Winckelmann A, Rasmussen TA, Shao W et al (2016) Broad activation of latent HIV-1 in vivo. Nat Commun 7(May):12731PubMedPubMedCentral Barton K, Hiener B, Winckelmann A, Rasmussen TA, Shao W et al (2016) Broad activation of latent HIV-1 in vivo. Nat Commun 7(May):12731PubMedPubMedCentral
8.
9.
go back to reference Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR et al (2017) Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21(4):494–506.e4PubMedPubMedCentral Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR et al (2017) Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21(4):494–506.e4PubMedPubMedCentral
10.
go back to reference Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O’Doherty U et al (2016) Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci 113(31):8783–8788PubMedPubMedCentral Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O’Doherty U et al (2016) Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci 113(31):8783–8788PubMedPubMedCentral
11.
go back to reference Bird A (2007) Perceptions of epigenetics. Nature. 447(7143):396–398PubMed Bird A (2007) Perceptions of epigenetics. Nature. 447(7143):396–398PubMed
12.
go back to reference Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500PubMed Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500PubMed
13.
14.
go back to reference Kouzarides T (2007) Chromatin modifications and their function. Cell. 128(4):693–705PubMed Kouzarides T (2007) Chromatin modifications and their function. Cell. 128(4):693–705PubMed
15.
go back to reference Michalak EM, Burr ML, Bannister AJ, Dawson MA (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20(10):573–589PubMed Michalak EM, Burr ML, Bannister AJ, Dawson MA (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20(10):573–589PubMed
16.
go back to reference Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature. 403(6765):41–45PubMed Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature. 403(6765):41–45PubMed
17.
go back to reference Bemer M (2018) Unraveling the complex epigenetic mechanisms that regulate gene activity. In: Clifton NJ (ed) Methods in molecular biology, vol 1675, pp 205–231 Bemer M (2018) Unraveling the complex epigenetic mechanisms that regulate gene activity. In: Clifton NJ (ed) Methods in molecular biology, vol 1675, pp 205–231
18.
go back to reference Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19(12):789–800PubMed Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19(12):789–800PubMed
19.
go back to reference Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65:6790–6799PubMedPubMedCentral Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65:6790–6799PubMedPubMedCentral
20.
go back to reference Verdin E, Paras P, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259PubMedPubMedCentral Verdin E, Paras P, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259PubMedPubMedCentral
21.
go back to reference Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, Mahmoudi T (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9(11) Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, Mahmoudi T (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9(11)
22.
go back to reference Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435PubMedPubMedCentral Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435PubMedPubMedCentral
23.
go back to reference Mbonye U, Karn J (2017) The molecular basis for human immunodeficiency virus latency. Annu Rev Virol 4:261–285PubMed Mbonye U, Karn J (2017) The molecular basis for human immunodeficiency virus latency. Annu Rev Virol 4:261–285PubMed
24.
go back to reference Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451PubMedPubMedCentral Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451PubMedPubMedCentral
25.
go back to reference Li Z, Lu H, Zhou Q (2016) A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 latency. Mol Cell Biol 36(7):1194–1205PubMedPubMedCentral Li Z, Lu H, Zhou Q (2016) A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 latency. Mol Cell Biol 36(7):1194–1205PubMedPubMedCentral
26.
go back to reference Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, van Lint C (1999) HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J 18(21):6106–6118PubMedPubMedCentral Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, van Lint C (1999) HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J 18(21):6106–6118PubMedPubMedCentral
27.
go back to reference Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 6(3):111PubMedPubMedCentral Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 6(3):111PubMedPubMedCentral
28.
go back to reference Ne E, Palstra R-J, Mahmoudi T (2017) Transcription : insights from the HIV-1 promoter. Int Rev Cell Mol Biol Transcr Gene Regul Heal Dis 335:191–243 Ne E, Palstra R-J, Mahmoudi T (2017) Transcription : insights from the HIV-1 promoter. Int Rev Cell Mol Biol Transcr Gene Regul Heal Dis 335:191–243
29.
go back to reference Sarracino A, Marcello A (2017) The relevance of post-transcriptional mechanisms in HIV latency reversal. Curr Pharm Des 23(28):4103–4111PubMed Sarracino A, Marcello A (2017) The relevance of post-transcriptional mechanisms in HIV latency reversal. Curr Pharm Des 23(28):4103–4111PubMed
30.
go back to reference Turner A-MW, Margolis DM (2017) Chromatin regulation and the histone code in HIV latency. Yale J Biol Med 90(2):229–243PubMedPubMedCentral Turner A-MW, Margolis DM (2017) Chromatin regulation and the histone code in HIV latency. Yale J Biol Med 90(2):229–243PubMedPubMedCentral
31.
go back to reference Williams SAF, Greene WC (2005) Host factors regulating post-integration latency of HIV. Trends Microbiol 13(4):137–139PubMed Williams SAF, Greene WC (2005) Host factors regulating post-integration latency of HIV. Trends Microbiol 13(4):137–139PubMed
32.
go back to reference Williams SA, Chen L-F, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25(1):139–149PubMed Williams SA, Chen L-F, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25(1):139–149PubMed
33.
go back to reference He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22(9):2965–2973PubMedPubMedCentral He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22(9):2965–2973PubMedPubMedCentral
34.
go back to reference Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology. 454–455:328–339PubMed Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology. 454–455:328–339PubMed
35.
go back to reference Spivak A, Planelles V (2018) Novel latency reversal agents for HIV-1 cure. Annu Rev Med 69:421–436PubMed Spivak A, Planelles V (2018) Novel latency reversal agents for HIV-1 cure. Annu Rev Med 69:421–436PubMed
36.
go back to reference Marban C, Suzanne S, Dequiedt F, De Walque S, Redel L et al (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26(2):412–423PubMedPubMedCentral Marban C, Suzanne S, Dequiedt F, De Walque S, Redel L et al (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26(2):412–423PubMedPubMedCentral
37.
go back to reference Rohr O, Marban C, Aunis D, Schaeffer E (2003) Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74:736–749PubMed Rohr O, Marban C, Aunis D, Schaeffer E (2003) Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74:736–749PubMed
38.
go back to reference Marban C, Redel L, Suzanne S, Van Lint C, Lecestre D et al (2005) COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 33(7):2318–2331PubMedPubMedCentral Marban C, Redel L, Suzanne S, Van Lint C, Lecestre D et al (2005) COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 33(7):2318–2331PubMedPubMedCentral
39.
go back to reference Le Douce V, Colin L, Redel L, Cherrier T, Herbein G et al (2012) LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 40(5):1904–1915PubMed Le Douce V, Colin L, Redel L, Cherrier T, Herbein G et al (2012) LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 40(5):1904–1915PubMed
40.
go back to reference Friedman J, Cho W-K, Chu CK, Keedy KS, Archin NM et al (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. Vol. 85:9078–9089 Friedman J, Cho W-K, Chu CK, Keedy KS, Archin NM et al (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. Vol. 85:9078–9089
41.
go back to reference Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Reportseports 16(11):1467–1481 Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Reportseports 16(11):1467–1481
42.
go back to reference Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285(22):16538–16545PubMedPubMedCentral Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285(22):16538–16545PubMedPubMedCentral
43.
go back to reference Ding D, Qu X, Li L, Zhou X, Liu S, Lin S, Wang P, Liu S, Kong C, Wang X, Liu L, Zhu H (2013) Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology. 440:182–189PubMed Ding D, Qu X, Li L, Zhou X, Liu S, Lin S, Wang P, Liu S, Kong C, Wang X, Liu L, Zhu H (2013) Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology. 440:182–189PubMed
44.
go back to reference Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio. 8(1):1–15 Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio. 8(1):1–15
45.
go back to reference Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMed Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMed
46.
go back to reference Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMed Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMed
47.
go back to reference Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17(9):551–565PubMedPubMedCentral Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17(9):551–565PubMedPubMedCentral
48.
go back to reference Verma M (2003) Viral genes and methylation. Annu Rev New York Acad Sci 983:170–180 Verma M (2003) Viral genes and methylation. Annu Rev New York Acad Sci 983:170–180
49.
go back to reference Pierard V, Guiguen A, Colin L, Wijmeersch G, Vanhulle C, van Driessche B, Dekoninck A, Blazkova J, Cardona C, Merimi M, Vierendeel V, Calomme C, Nguyên TL, Nuttinck M, Twizere JC, Kettmann R, Portetelle D, Burny A, Hirsch I, Rohr O, van Lint C (2010) DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription. J Biol Chem 285(25):19434–19449PubMedPubMedCentral Pierard V, Guiguen A, Colin L, Wijmeersch G, Vanhulle C, van Driessche B, Dekoninck A, Blazkova J, Cardona C, Merimi M, Vierendeel V, Calomme C, Nguyên TL, Nuttinck M, Twizere JC, Kettmann R, Portetelle D, Burny A, Hirsch I, Rohr O, van Lint C (2010) DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription. J Biol Chem 285(25):19434–19449PubMedPubMedCentral
50.
go back to reference Ishida T, Hamano A, Koiwa T, Watanabe T (2006) 5′ long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology. 3:69PubMedPubMedCentral Ishida T, Hamano A, Koiwa T, Watanabe T (2006) 5′ long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology. 3:69PubMedPubMedCentral
51.
go back to reference Bednarik DP, Mosca JD, Raj NB (1987) Methylation as a modulator of expression of human immunodeficiency virus. J Virol 61(4):1253–1257PubMedPubMedCentral Bednarik DP, Mosca JD, Raj NB (1987) Methylation as a modulator of expression of human immunodeficiency virus. J Virol 61(4):1253–1257PubMedPubMedCentral
52.
go back to reference Bednarik D, Cook J, Pitha P (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J 9(4):1157–1164PubMedPubMedCentral Bednarik D, Cook J, Pitha P (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J 9(4):1157–1164PubMedPubMedCentral
53.
go back to reference Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5(6):e1000495PubMedPubMedCentral Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5(6):e1000495PubMedPubMedCentral
54.
go back to reference Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5(8):e1000554PubMedPubMedCentral Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5(8):e1000554PubMedPubMedCentral
55.
go back to reference Chavez L, Kauder S, Verdin E (2011) In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods. 53(1):47–53PubMed Chavez L, Kauder S, Verdin E (2011) In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods. 53(1):47–53PubMed
56.
go back to reference Palacios JA, Pérez-Piñar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gómez-Hernando C, Rodés B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86(23):13081–13084PubMedPubMedCentral Palacios JA, Pérez-Piñar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gómez-Hernando C, Rodés B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86(23):13081–13084PubMedPubMedCentral
57.
go back to reference Blazkova J, Murray D, Justement JS, Funk E, Nelson A et al (2012) Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol 86(9):5390–5392PubMedPubMedCentral Blazkova J, Murray D, Justement JS, Funk E, Nelson A et al (2012) Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol 86(9):5390–5392PubMedPubMedCentral
58.
go back to reference Weber S, Weiser B, Kemal KS, Burger H, Ramirez CM, Korn K, Anastos K, Kaul R, Kovacs C, Doerfler W (2014) Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG’s. Virology. 449:181–189PubMed Weber S, Weiser B, Kemal KS, Burger H, Ramirez CM, Korn K, Anastos K, Kaul R, Kovacs C, Doerfler W (2014) Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG’s. Virology. 449:181–189PubMed
59.
go back to reference Kint S, De Spiegelaere W, De Kesel J, Vandekerckhove L, Van Criekinge W (2018) Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One 13(6):e0199091PubMedPubMedCentral Kint S, De Spiegelaere W, De Kesel J, Vandekerckhove L, Van Criekinge W (2018) Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One 13(6):e0199091PubMedPubMedCentral
60.
go back to reference LaMere SA, Chaillon A, Huynh C, Smith DM, Gianella S (2019) Challenges in quantifying cytosine methylation in the HIV provirus. MBio. 10(1) LaMere SA, Chaillon A, Huynh C, Smith DM, Gianella S (2019) Challenges in quantifying cytosine methylation in the HIV provirus. MBio. 10(1)
61.
go back to reference Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D et al (2016) Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 8:19PubMedPubMedCentral Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D et al (2016) Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 8:19PubMedPubMedCentral
62.
go back to reference Cortés-Rubio CN, Salgado-Montes de Oca G, Prado-Galbarro FJ, Matías-Florentino M, Murakami-Ogasawara A et al (2019) Longitudinal variation in human immunodeficiency virus long terminal repeat methylation in individuals on suppressive antiretroviral therapy. Clin Epigenetics 11(1):134PubMedPubMedCentral Cortés-Rubio CN, Salgado-Montes de Oca G, Prado-Galbarro FJ, Matías-Florentino M, Murakami-Ogasawara A et al (2019) Longitudinal variation in human immunodeficiency virus long terminal repeat methylation in individuals on suppressive antiretroviral therapy. Clin Epigenetics 11(1):134PubMedPubMedCentral
63.
64.
go back to reference Kaikkonen MU, Lam MTY, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440PubMedPubMedCentral Kaikkonen MU, Lam MTY, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440PubMedPubMedCentral
65.
go back to reference Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145–166PubMed Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145–166PubMed
66.
go back to reference Li J, Chen C, Ma X, Geng G, Liu B et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:1–10 Li J, Chen C, Ma X, Geng G, Liu B et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:1–10
68.
go back to reference Miller R (1988) Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science 239(4846):1420–1422PubMed Miller R (1988) Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science 239(4846):1420–1422PubMed
69.
go back to reference Klaver B, Berkhout B (1994) Comparison of 5′ and 3′ long terminal repeat promoter function in human immunodeficiency virus. J Virol 68(6):3830–3840PubMedPubMedCentral Klaver B, Berkhout B (1994) Comparison of 5′ and 3′ long terminal repeat promoter function in human immunodeficiency virus. J Virol 68(6):3830–3840PubMedPubMedCentral
70.
go back to reference Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R et al (2012) HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 9(1):38PubMedPubMedCentral Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R et al (2012) HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 9(1):38PubMedPubMedCentral
71.
go back to reference Landry S, Halin M, Lefort S, Audet B, Vaquero C et al (2007) Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 4:71PubMedPubMedCentral Landry S, Halin M, Lefort S, Audet B, Vaquero C et al (2007) Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 4:71PubMedPubMedCentral
72.
go back to reference Clerc I, Laverdure S, Torresilla C, Landry S, Borel S et al (2011) Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 8(1):74PubMedPubMedCentral Clerc I, Laverdure S, Torresilla C, Landry S, Borel S et al (2011) Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 8(1):74PubMedPubMedCentral
73.
go back to reference Saayman S, Ackley A, Turner A-MW, Famiglietti M, Bosque A et al (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22(6):1164–1175PubMedPubMedCentral Saayman S, Ackley A, Turner A-MW, Famiglietti M, Bosque A et al (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22(6):1164–1175PubMedPubMedCentral
74.
go back to reference Zapata JC, Campilongo F, Barclay RA, DeMarino C, Iglesias-Ussel MD et al (2017) The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology. 506(March):34–44PubMed Zapata JC, Campilongo F, Barclay RA, DeMarino C, Iglesias-Ussel MD et al (2017) The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology. 506(March):34–44PubMed
75.
go back to reference Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110(4):521–529PubMed Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110(4):521–529PubMed
76.
go back to reference Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17(8):1186–1194PubMedPubMedCentral Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17(8):1186–1194PubMedPubMedCentral
77.
go back to reference Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24(1):47–54PubMed Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24(1):47–54PubMed
78.
go back to reference Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11(12):1287–1289PubMed Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11(12):1287–1289PubMed
80.
go back to reference Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, Pongor S, Luzzati R, Recchia A, Mavilio F, Giacca M, Lusic M (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature. 521:227–231PubMed Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, Pongor S, Luzzati R, Recchia A, Mavilio F, Giacca M, Lusic M (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature. 521:227–231PubMed
81.
go back to reference Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath M, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC (2015) HIV-1 integration landscape during latent and active infection. Cell. 160(3):420–432PubMedPubMedCentral Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath M, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC (2015) HIV-1 integration landscape during latent and active infection. Cell. 160(3):420–432PubMedPubMedCentral
82.
go back to reference Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH (2014) Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 345(6193):179–183PubMedPubMedCentral Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH (2014) Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 345(6193):179–183PubMedPubMedCentral
83.
go back to reference Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB, Styrchak S, Huang HC, Edlefsen PT, Mullins JI, Frenkel LM (2014) HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 345(6196):570–573PubMedPubMedCentral Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB, Styrchak S, Huang HC, Edlefsen PT, Mullins JI, Frenkel LM (2014) HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 345(6196):570–573PubMedPubMedCentral
84.
go back to reference Ikeda T, Shibata J, Yoshimura K, Koito A, Matsushita S (2007) Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis 195(5):716–725PubMed Ikeda T, Shibata J, Yoshimura K, Koito A, Matsushita S (2007) Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis 195(5):716–725PubMed
86.
go back to reference Bui JK, Sobolewski MD, Keele BF, Spindler J, Musick A, Wiegand A, Luke BT, Shao W, Hughes SH, Coffin JM, Kearney MF, Mellors JW (2017) Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog 13(3):e1006283PubMedPubMedCentral Bui JK, Sobolewski MD, Keele BF, Spindler J, Musick A, Wiegand A, Luke BT, Shao W, Hughes SH, Coffin JM, Kearney MF, Mellors JW (2017) Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog 13(3):e1006283PubMedPubMedCentral
87.
go back to reference Kwon KJ, Siliciano RF (2017) HIV persistence: clonal expansion of cells in the latent reservoir. J Clin Invest 127(7):2536–2538PubMedPubMedCentral Kwon KJ, Siliciano RF (2017) HIV persistence: clonal expansion of cells in the latent reservoir. J Clin Invest 127(7):2536–2538PubMedPubMedCentral
88.
go back to reference Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, Anderson EM, Watters SA, Hill S, Wu X, Wells D, Su L, Luke BT, Halvas EK, Besson G, Penrose KJ, Yang Z, Kwan RW, van Waes C, Uldrick T, Citrin DE, Kovacs J, Polis MA, Rehm CA, Gorelick R, Piatak M, Keele BF, Kearney MF, Coffin JM, Hughes SH, Mellors JW, Maldarelli F (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113(7):1883–1888PubMedPubMedCentral Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, Anderson EM, Watters SA, Hill S, Wu X, Wells D, Su L, Luke BT, Halvas EK, Besson G, Penrose KJ, Yang Z, Kwan RW, van Waes C, Uldrick T, Citrin DE, Kovacs J, Polis MA, Rehm CA, Gorelick R, Piatak M, Keele BF, Kearney MF, Coffin JM, Hughes SH, Mellors JW, Maldarelli F (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113(7):1883–1888PubMedPubMedCentral
89.
go back to reference Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman B, Vourekas A, Nunnari G, O’Doherty U (2019) Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 10(1):728PubMedPubMedCentral Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman B, Vourekas A, Nunnari G, O’Doherty U (2019) Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 10(1):728PubMedPubMedCentral
90.
go back to reference Anderson EM, Maldarelli F (2018) The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology. 15(1):71PubMedPubMedCentral Anderson EM, Maldarelli F (2018) The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology. 15(1):71PubMedPubMedCentral
91.
go back to reference Coffin JM, Wells DW, Zerbato JM, Kuruc JD, Guo S et al (2019) Clones of infected cells arise early in HIV-infected individuals. JCI Insight 4(12):10–15 Coffin JM, Wells DW, Zerbato JM, Kuruc JD, Guo S et al (2019) Clones of infected cells arise early in HIV-infected individuals. JCI Insight 4(12):10–15
92.
go back to reference Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900PubMedPubMedCentral Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900PubMedPubMedCentral
93.
go back to reference Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79(11):6610–6619PubMedPubMedCentral Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79(11):6610–6619PubMedPubMedCentral
94.
go back to reference Lusic M, Giacca M (2015) Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol 427(3):688–694PubMed Lusic M, Giacca M (2015) Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol 427(3):688–694PubMed
95.
go back to reference Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20(7):1726–1738PubMedPubMedCentral Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20(7):1726–1738PubMedPubMedCentral
96.
go back to reference Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22(8):1868–1877PubMedPubMedCentral Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22(8):1868–1877PubMedPubMedCentral
97.
go back to reference Dieudonné M, Maiuri P, Biancotto C, Knezevich A, Kula A, Lusic M, Marcello A (2009) Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J 28(15):2231–2243PubMedPubMedCentral Dieudonné M, Maiuri P, Biancotto C, Knezevich A, Kula A, Lusic M, Marcello A (2009) Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J 28(15):2231–2243PubMedPubMedCentral
98.
go back to reference Gallastegui E, Millán-Zambrano G, Terme J-M, Chávez S, Jordan A (2011) Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 85(7):3187–3202PubMedPubMedCentral Gallastegui E, Millán-Zambrano G, Terme J-M, Chávez S, Jordan A (2011) Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 85(7):3187–3202PubMedPubMedCentral
99.
go back to reference Symons J, Cameron PU, Lewin SR (2017) HIV integration sites and implications for maintenance of the reservoir. Curr Opin HIV AIDS 13(2):152–159 Symons J, Cameron PU, Lewin SR (2017) HIV integration sites and implications for maintenance of the reservoir. Curr Opin HIV AIDS 13(2):152–159
100.
go back to reference Cesana D, Santoni de Sio FR, Rudilosso L, Gallina P, Calabria A, Beretta S, Merelli I, Bruzzesi E, Passerini L, Nozza S, Vicenzi E, Poli G, Gregori S, Tambussi G, Montini E (2017) HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 8(1):498PubMedPubMedCentral Cesana D, Santoni de Sio FR, Rudilosso L, Gallina P, Calabria A, Beretta S, Merelli I, Bruzzesi E, Passerini L, Nozza S, Vicenzi E, Poli G, Gregori S, Tambussi G, Montini E (2017) HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 8(1):498PubMedPubMedCentral
101.
go back to reference Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 122(2):169–182PubMed Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 122(2):169–182PubMed
102.
103.
go back to reference Karn J (2011) The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV/AIDS 6(1):4–11 Karn J (2011) The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV/AIDS 6(1):4–11
104.
go back to reference Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR (2012) Dynamics and memory of heterochromatin in living cells. Cell. 149(7):1447–1460PubMedPubMedCentral Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR (2012) Dynamics and memory of heterochromatin in living cells. Cell. 149(7):1447–1460PubMedPubMedCentral
105.
go back to reference Hakre S, Chavez L, Shirakawa K, Verdin E (2012) HIV latency: experimental systems and molecular models. FEMS Microbiol Rev 36(3):706–716PubMed Hakre S, Chavez L, Shirakawa K, Verdin E (2012) HIV latency: experimental systems and molecular models. FEMS Microbiol Rev 36(3):706–716PubMed
106.
go back to reference Matsuda Y, Kobayashi-Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M (2015) Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep 5(7701):1–11 Matsuda Y, Kobayashi-Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M (2015) Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep 5(7701):1–11
107.
go back to reference Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist Rna, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153(4):773–784PubMedPubMedCentral Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist Rna, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153(4):773–784PubMedPubMedCentral
108.
go back to reference Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 21:5380–5387PubMed Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 21:5380–5387PubMed
109.
go back to reference Barichievy S, Naidoo J, Mhlanga MM (2015) Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 6(MAR):1–11 Barichievy S, Naidoo J, Mhlanga MM (2015) Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 6(MAR):1–11
110.
go back to reference Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang K-T (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5(class I):118PubMedPubMedCentral Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang K-T (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5(class I):118PubMedPubMedCentral
111.
go back to reference Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood. 119(26):6259–6267PubMed Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood. 119(26):6259–6267PubMed
112.
go back to reference Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Tojal Da Silva I et al (2018) Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. Elife. 1:7 Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Tojal Da Silva I et al (2018) Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. Elife. 1:7
113.
go back to reference Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18(10):439–447PubMedPubMedCentral Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18(10):439–447PubMedPubMedCentral
114.
go back to reference Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou M-M (2008) Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10(9):1114–1122PubMedPubMedCentral Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou M-M (2008) Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10(9):1114–1122PubMedPubMedCentral
115.
go back to reference Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K (2004) Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol 78(14):7299–7310PubMedPubMedCentral Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K (2004) Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol 78(14):7299–7310PubMedPubMedCentral
116.
go back to reference Shamay M, Krithivas A, Zhang J, Hayward SD (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci 103(39):14554–14559PubMedPubMedCentral Shamay M, Krithivas A, Zhang J, Hayward SD (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci 103(39):14554–14559PubMedPubMedCentral
117.
go back to reference Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16INK4A by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6(6):e1000951PubMedPubMedCentral Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16INK4A by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6(6):e1000951PubMedPubMedCentral
118.
go back to reference Hattori N, Ushijima T (2016) Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med 8(1):10PubMedPubMedCentral Hattori N, Ushijima T (2016) Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med 8(1):10PubMedPubMedCentral
119.
go back to reference Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, Fujii M, Osada H, Sekido Y, Murakami S, Tanaka Y, Joh T, Sato S, Takahashi S, Wakita T, Zhu J, Issa JP, Kondo Y (2014) Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology. 146(2):562–572PubMed Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, Fujii M, Osada H, Sekido Y, Murakami S, Tanaka Y, Joh T, Sato S, Takahashi S, Wakita T, Zhu J, Issa JP, Kondo Y (2014) Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology. 146(2):562–572PubMed
120.
go back to reference Mikovits J, Young H, Vertino P, Issa J-P, Pitha P, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase , resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production infection with human immunodeficiency VI. Mol Cell Biol 18(9):5166–5177PubMedPubMedCentral Mikovits J, Young H, Vertino P, Issa J-P, Pitha P, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase , resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production infection with human immunodeficiency VI. Mol Cell Biol 18(9):5166–5177PubMedPubMedCentral
121.
go back to reference Fang J, Mikovits JA, Bagni R, Cari L, Ruscetti FW et al (2001) Infection of lymphoid cells by immunodeficiency virus type 1 increases de novo methylation infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol 75(20):9753–9761PubMedPubMedCentral Fang J, Mikovits JA, Bagni R, Cari L, Ruscetti FW et al (2001) Infection of lymphoid cells by immunodeficiency virus type 1 increases de novo methylation infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol 75(20):9753–9761PubMedPubMedCentral
122.
go back to reference Chen L, Zhang S, Pan X, Hu XH, Zhang YH, Yuan F, Huang T, Cai YD (2019) HIV infection alters the human epigenetic landscape. Gene Ther 26(1–2):29–39PubMed Chen L, Zhang S, Pan X, Hu XH, Zhang YH, Yuan F, Huang T, Cai YD (2019) HIV infection alters the human epigenetic landscape. Gene Ther 26(1–2):29–39PubMed
123.
go back to reference Nelson KN, Hui Q, Rimland D, Xu K, Freiberg MS, Justice AC, Marconi VC, Sun YV (2017) Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS. 31(4):571–575PubMed Nelson KN, Hui Q, Rimland D, Xu K, Freiberg MS, Justice AC, Marconi VC, Sun YV (2017) Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS. 31(4):571–575PubMed
124.
go back to reference Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, Flagg K, Chen D, Zhang K, Fox HS, Ideker T (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62(2):157–168PubMedPubMedCentral Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, Flagg K, Chen D, Zhang K, Fox HS, Ideker T (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62(2):157–168PubMedPubMedCentral
125.
go back to reference Maricato JT, Furtado MN, Takenaka MC, Nunes ERM, Fincatti P, Meliso FM, da Silva ID, Jasiulionis MG, Cecília de Araripe Sucupira M, Diaz RS, Janini LM (2015) Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 10(4):e0119234PubMedPubMedCentral Maricato JT, Furtado MN, Takenaka MC, Nunes ERM, Fincatti P, Meliso FM, da Silva ID, Jasiulionis MG, Cecília de Araripe Sucupira M, Diaz RS, Janini LM (2015) Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 10(4):e0119234PubMedPubMedCentral
126.
go back to reference Britton L-MP, Sova P, Belisle S, Liu S, Chan EY et al (2014) A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics. 14(19):2226–2230PubMedPubMedCentral Britton L-MP, Sova P, Belisle S, Liu S, Chan EY et al (2014) A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics. 14(19):2226–2230PubMedPubMedCentral
127.
go back to reference Perreau M, Banga R, Pantaleo G (2017) Targeted immune interventions for an HIV-1 cure. Trends Mol Med 23(10):945–961PubMed Perreau M, Banga R, Pantaleo G (2017) Targeted immune interventions for an HIV-1 cure. Trends Mol Med 23(10):945–961PubMed
128.
go back to reference Zerbato JM, Purves HV, Lewin SR, Rasmussen TA (2019) Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 38:1–9PubMedPubMedCentral Zerbato JM, Purves HV, Lewin SR, Rasmussen TA (2019) Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 38:1–9PubMedPubMedCentral
129.
go back to reference Chun T-W, Engel D, Mizell SB, Hallahan CW, Fischette MR, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS (1999) Effect of interleukin-2 on the pool of latently infected resting CD4 + T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5(6):651–655PubMed Chun T-W, Engel D, Mizell SB, Hallahan CW, Fischette MR, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS (1999) Effect of interleukin-2 on the pool of latently infected resting CD4 + T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5(6):651–655PubMed
130.
go back to reference Prins JM, Jurriaans S, van Praag RME, Blaak H, van Rij R, Schellekens PT, ten Berge I, Yong SL, Fox CH, Roos MT, de Wolf F, Goudsmit J, Schuitemaker H, Lange JM (1999) Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS. 13:2405–2410PubMed Prins JM, Jurriaans S, van Praag RME, Blaak H, van Rij R, Schellekens PT, ten Berge I, Yong SL, Fox CH, Roos MT, de Wolf F, Goudsmit J, Schuitemaker H, Lange JM (1999) Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS. 13:2405–2410PubMed
131.
go back to reference Davey RT, Bhat N, Yoder C, Chun T-W, Metcalf JA et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci 96(26):15109–15114PubMedPubMedCentral Davey RT, Bhat N, Yoder C, Chun T-W, Metcalf JA et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci 96(26):15109–15114PubMedPubMedCentral
132.
go back to reference Rasmussen TA, Tolstrup M, Søgaard OS (2015) Reversal of latency as part of a cure for HIV-1. Trends Microbiol Rasmussen TA, Tolstrup M, Søgaard OS (2015) Reversal of latency as part of a cure for HIV-1. Trends Microbiol
133.
go back to reference Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 487(7408):482–485PubMedPubMedCentral Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 487(7408):482–485PubMedPubMedCentral
134.
go back to reference Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401PubMed Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401PubMed
135.
go back to reference Boritz EA, Darko S, Swaszek L, Wolf G, Wells D et al (2016) Multiple origins of virus persistence during natural control of HIV infection. Cell:1–12 Boritz EA, Darko S, Swaszek L, Wolf G, Wells D et al (2016) Multiple origins of virus persistence during natural control of HIV infection. Cell:1–12
136.
go back to reference Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, Torrella A, Planas B, Badía R, Martin-Castillo M, Fernández-Sojo J, Genescà M, Falcó V, Buzon MJ (2019) Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 15(8):e1007991PubMedPubMedCentral Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, Torrella A, Planas B, Badía R, Martin-Castillo M, Fernández-Sojo J, Genescà M, Falcó V, Buzon MJ (2019) Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 15(8):e1007991PubMedPubMedCentral
137.
go back to reference Vanhamel J, Bruggemans A, Debyser Z (2019) Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 5(1):3–9PubMedPubMedCentral Vanhamel J, Bruggemans A, Debyser Z (2019) Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 5(1):3–9PubMedPubMedCentral
138.
139.
go back to reference Sengupta S, Siliciano RF (2018) Targeting the latent reservoir for HIV-1. Immunodefic Rev 48:872–895 Sengupta S, Siliciano RF (2018) Targeting the latent reservoir for HIV-1. Immunodefic Rev 48:872–895
140.
go back to reference Elsheikh MM, Tang Y, Li D, Jiang G (2019) Deep latency: a new insight into a functional HIV cure. EBioMedicine. 45:624–629PubMedPubMedCentral Elsheikh MM, Tang Y, Li D, Jiang G (2019) Deep latency: a new insight into a functional HIV cure. EBioMedicine. 45:624–629PubMedPubMedCentral
141.
go back to reference Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, Ho PT, Honeycutt JB, Fallahi M, Trautmann L, Garcia JV, Valente ST (2017) In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep 21(3):600–611PubMedPubMedCentral Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, Ho PT, Honeycutt JB, Fallahi M, Trautmann L, Garcia JV, Valente ST (2017) In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep 21(3):600–611PubMedPubMedCentral
142.
go back to reference Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108PubMedPubMedCentral Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108PubMedPubMedCentral
143.
go back to reference Li C, Mousseau G, Valente ST (2019) Tat inhibition by didehydro-cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 12(1):23PubMedPubMedCentral Li C, Mousseau G, Valente ST (2019) Tat inhibition by didehydro-cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 12(1):23PubMedPubMedCentral
144.
go back to reference Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio. 6(4):e00465PubMedPubMedCentral Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio. 6(4):e00465PubMedPubMedCentral
145.
go back to reference Mousseau G, Aneja R, Clementz MA, Mediouni S, Lima NS et al (2019) Resistance to the Tat inhibitor didehydro-cortistatin A is mediated by heightened basal HIV-1 transcription. MBio. 10(4) Mousseau G, Aneja R, Clementz MA, Mediouni S, Lima NS et al (2019) Resistance to the Tat inhibitor didehydro-cortistatin A is mediated by heightened basal HIV-1 transcription. MBio. 10(4)
146.
go back to reference Rice AP (2019) Unexpected mutations in HIV-1 that confer resistance to the Tat inhibitor didehydro-cortistatin A. MBio. 10(4):1–4 Rice AP (2019) Unexpected mutations in HIV-1 that confer resistance to the Tat inhibitor didehydro-cortistatin A. MBio. 10(4):1–4
147.
go back to reference Demeulemeester J, Chaltin P, Marchand A, De Maeyer M, Debyser Z, Christ F (2014) LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 – 2014). Expert Opin Ther Pat 24(6):609–632PubMed Demeulemeester J, Chaltin P, Marchand A, De Maeyer M, Debyser Z, Christ F (2014) LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 – 2014). Expert Opin Ther Pat 24(6):609–632PubMed
148.
go back to reference Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P et al (2019) Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology. 16(1):8PubMedPubMedCentral Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P et al (2019) Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology. 16(1):8PubMedPubMedCentral
149.
go back to reference Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z (2016) LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine. 8:248–264PubMedPubMedCentral Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z (2016) LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine. 8:248–264PubMedPubMedCentral
150.
go back to reference Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA et al (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 8(9):e74163PubMedPubMedCentral Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA et al (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 8(9):e74163PubMedPubMedCentral
151.
go back to reference Nehme Z, Pasquereau S, Herbein G. 2019. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 11(1):1–17 Nehme Z, Pasquereau S, Herbein G. 2019. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 11(1):1–17
Metadata
Title
Epigenetic crosstalk in chronic infection with HIV-1
Authors
Ulrike C Lange
Roxane Verdikt
Amina Ait-Ammar
Carine Van Lint
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 2/2020
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-020-00783-3

Other articles of this Issue 2/2020

Seminars in Immunopathology 2/2020 Go to the issue