Skip to main content
Top
Published in: Seminars in Immunopathology 5/2017

01-07-2017 | Review

Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology

Authors: Rudragouda Channappanavar, Stanley Perlman

Published in: Seminars in Immunopathology | Issue 5/2017

Login to get access

Abstract

Human coronaviruses (hCoVs) can be divided into low pathogenic and highly pathogenic coronaviruses. The low pathogenic CoVs infect the upper respiratory tract and cause mild, cold-like respiratory illness. In contrast, highly pathogenic hCoVs such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) predominantly infect lower airways and cause fatal pneumonia. Severe pneumonia caused by pathogenic hCoVs is often associated with rapid virus replication, massive inflammatory cell infiltration and elevated pro-inflammatory cytokine/chemokine responses resulting in acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Recent studies in experimentally infected animal strongly suggest a crucial role for virus-induced immunopathological events in causing fatal pneumonia after hCoV infections. Here we review the current understanding of how a dysregulated immune response may cause lung immunopathology leading to deleterious clinical manifestations after pathogenic hCoV infections.
Literature
1.
go back to reference Masters PS, Perlman, S (2013) Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 825–858 Masters PS, Perlman, S (2013) Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 825–858
2.
go back to reference Siddell SZJ, Snijder EJ (2005) Coronaviruses, toroviruses, and arteriviruses, vol. 1. Hodder Arnold, London Siddell SZJ, Snijder EJ (2005) Coronaviruses, toroviruses, and arteriviruses, vol. 1. Hodder Arnold, London
3.
go back to reference Peck KM et al (2015) Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol 2(1):95–117PubMedCrossRef Peck KM et al (2015) Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol 2(1):95–117PubMedCrossRef
4.
go back to reference Su S et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedCrossRef Su S et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedCrossRef
5.
go back to reference Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664PubMedPubMedCentralCrossRef Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664PubMedPubMedCentralCrossRef
6.
go back to reference Heugel J et al (2007) Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J 26(8):753–755PubMedCrossRef Heugel J et al (2007) Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J 26(8):753–755PubMedCrossRef
7.
go back to reference Kuypers J et al (2007) Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics 119(1):e70–e76PubMedCrossRef Kuypers J et al (2007) Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics 119(1):e70–e76PubMedCrossRef
8.
go back to reference Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976PubMedCrossRef Drosten C et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976PubMedCrossRef
9.
go back to reference Kuiken T et al (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380):263–270PubMedCrossRef Kuiken T et al (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380):263–270PubMedCrossRef
10.
go back to reference Peiris JS et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325PubMedCrossRef Peiris JS et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325PubMedCrossRef
11.
go back to reference van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6) van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6)
12.
go back to reference Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef
14.
go back to reference WHO Cumulative number of reported probable cases of SARS. In: 2003 WHO Cumulative number of reported probable cases of SARS. In: 2003
17.
go back to reference Adney DR et al (2014) Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20(12):1999–2005PubMedPubMedCentralCrossRef Adney DR et al (2014) Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20(12):1999–2005PubMedPubMedCentralCrossRef
18.
20.
21.
go back to reference Arabi YM et al (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 160(6):389–397PubMedCrossRef Arabi YM et al (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 160(6):389–397PubMedCrossRef
22.
go back to reference Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761PubMedCrossRef Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761PubMedCrossRef
23.
go back to reference Leong HN et al (2006) Clinical and laboratory findings of SARS in Singapore. Ann Acad Med Singap 35(5):332–339PubMed Leong HN et al (2006) Clinical and laboratory findings of SARS in Singapore. Ann Acad Med Singap 35(5):332–339PubMed
24.
go back to reference Saad M et al (2014) Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29:301–306PubMedCrossRef Saad M et al (2014) Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29:301–306PubMedCrossRef
25.
go back to reference Al-Tawfiq JA et al (2014) Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59(2):160–165PubMedCrossRef Al-Tawfiq JA et al (2014) Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59(2):160–165PubMedCrossRef
27.
28.
go back to reference Peiris JS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772PubMedCrossRef Peiris JS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772PubMedCrossRef
29.
30.
go back to reference van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112PubMedCrossRef van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112PubMedCrossRef
32.
go back to reference Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778PubMedCrossRef Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778PubMedCrossRef
33.
go back to reference van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112 van den Brand JM et al (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151(1):83–112
34.
go back to reference Cui W et al (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37(6):857–859PubMedCrossRef Cui W et al (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37(6):857–859PubMedCrossRef
35.
go back to reference Li T et al (2004) Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 189(4):648–651PubMedCrossRef Li T et al (2004) Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 189(4):648–651PubMedCrossRef
36.
go back to reference Wang YH et al (2004) A cluster of patients with severe acute respiratory syndrome in a chest ward in southern Taiwan. Intensive Care Med 30(6):1228–1231PubMedCrossRef Wang YH et al (2004) A cluster of patients with severe acute respiratory syndrome in a chest ward in southern Taiwan. Intensive Care Med 30(6):1228–1231PubMedCrossRef
37.
go back to reference Ng DL et al (2016) Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 186(3):652–658PubMedCrossRef Ng DL et al (2016) Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 186(3):652–658PubMedCrossRef
38.
go back to reference Channappanavar R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19(2):181–193PubMedPubMedCentralCrossRef Channappanavar R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19(2):181–193PubMedPubMedCentralCrossRef
39.
go back to reference Davidson S et al (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res 35(4):252–264CrossRef Davidson S et al (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res 35(4):252–264CrossRef
41.
go back to reference Cheung CY et al (2005) Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79(12):7819–7826PubMedPubMedCentralCrossRef Cheung CY et al (2005) Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79(12):7819–7826PubMedPubMedCentralCrossRef
43.
44.
go back to reference Chien JY et al (2006) Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 11(6):715–722PubMedCrossRef Chien JY et al (2006) Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 11(6):715–722PubMedCrossRef
45.
go back to reference Wang CH et al (2005) Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 6:42PubMedPubMedCentralCrossRef Wang CH et al (2005) Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 6:42PubMedPubMedCentralCrossRef
48.
go back to reference Cameron MJ et al (2008) Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133(1):13–19PubMedCrossRef Cameron MJ et al (2008) Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133(1):13–19PubMedCrossRef
49.
go back to reference Cameron MJRL, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, Seneviratne C, Bosinger SE, Persad D, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ (2007) Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81(16):8692–8706PubMedPubMedCentralCrossRef Cameron MJRL, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, Seneviratne C, Bosinger SE, Persad D, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ (2007) Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81(16):8692–8706PubMedPubMedCentralCrossRef
50.
go back to reference Huang KJ et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194PubMedCrossRef Huang KJ et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194PubMedCrossRef
51.
go back to reference Theron M et al (2005) A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 32(1):30–38PubMedCrossRef Theron M et al (2005) A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 32(1):30–38PubMedCrossRef
52.
go back to reference Lau SK et al (2013) Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94(Pt 12):2679–2690PubMedCrossRef Lau SK et al (2013) Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94(Pt 12):2679–2690PubMedCrossRef
53.
go back to reference Chu H et al (2015) Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 213(6):904–14 Chu H et al (2015) Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 213(6):904–14
54.
go back to reference Tynell J et al (2016) Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 97(2):344–355PubMedPubMedCentralCrossRef Tynell J et al (2016) Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 97(2):344–355PubMedPubMedCentralCrossRef
55.
go back to reference Zhou J et al (2014) Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209(9):1331–1342PubMedCrossRef Zhou J et al (2014) Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209(9):1331–1342PubMedCrossRef
56.
go back to reference Scheuplein VA et al (2015) High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89(7):3859–3869PubMedPubMedCentralCrossRef Scheuplein VA et al (2015) High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89(7):3859–3869PubMedPubMedCentralCrossRef
57.
go back to reference Kim ES et al (2016) Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 31(11):1717–1725PubMedPubMedCentralCrossRef Kim ES et al (2016) Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 31(11):1717–1725PubMedPubMedCentralCrossRef
58.
go back to reference Min CK et al (2016) Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 6:25359PubMedPubMedCentralCrossRef Min CK et al (2016) Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 6:25359PubMedPubMedCentralCrossRef
59.
go back to reference Roberts A et al (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79(9):5833–5838PubMedPubMedCentralCrossRef Roberts A et al (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79(9):5833–5838PubMedPubMedCentralCrossRef
60.
go back to reference Day CW et al (2009) A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395(2):210–222PubMedPubMedCentralCrossRef Day CW et al (2009) A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395(2):210–222PubMedPubMedCentralCrossRef
61.
go back to reference Nagata N et al (2008) Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Am J Pathol 172(6):1625–1637PubMedPubMedCentralCrossRef Nagata N et al (2008) Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Am J Pathol 172(6):1625–1637PubMedPubMedCentralCrossRef
63.
go back to reference Frieman MB et al (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 6(4):e1000849PubMedPubMedCentralCrossRef Frieman MB et al (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 6(4):e1000849PubMedPubMedCentralCrossRef
64.
go back to reference Zhao J et al (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930PubMedPubMedCentralCrossRef Zhao J et al (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930PubMedPubMedCentralCrossRef
65.
go back to reference Graham RL et al (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18(12):1820–1826PubMedPubMedCentralCrossRef Graham RL et al (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18(12):1820–1826PubMedPubMedCentralCrossRef
66.
go back to reference Rockx B et al (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83(14):7062–7074PubMedPubMedCentralCrossRef Rockx B et al (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83(14):7062–7074PubMedPubMedCentralCrossRef
68.
go back to reference Totura AL et al (2015) Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6(3):e00638–e00615PubMedPubMedCentralCrossRef Totura AL et al (2015) Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6(3):e00638–e00615PubMedPubMedCentralCrossRef
69.
go back to reference Jimenez-Guardeno JM et al (2014) The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 10(8):e1004320PubMedPubMedCentralCrossRef Jimenez-Guardeno JM et al (2014) The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 10(8):e1004320PubMedPubMedCentralCrossRef
70.
go back to reference Nieto-Torres JL et al (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10(5):e1004077PubMedPubMedCentralCrossRef Nieto-Torres JL et al (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10(5):e1004077PubMedPubMedCentralCrossRef
71.
go back to reference Nieto-Torres JL et al (2015) Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–339PubMedPubMedCentralCrossRef Nieto-Torres JL et al (2015) Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–339PubMedPubMedCentralCrossRef
72.
go back to reference de Wit E et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 110(41):16598–16603PubMedPubMedCentralCrossRef de Wit E et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 110(41):16598–16603PubMedPubMedCentralCrossRef
74.
go back to reference Houser KV et al (2016) Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection. J Infect Dis 213(10):1557–1561PubMedPubMedCentralCrossRef Houser KV et al (2016) Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection. J Infect Dis 213(10):1557–1561PubMedPubMedCentralCrossRef
76.
go back to reference Johnson RF et al (2015) Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology 485:422–430PubMedPubMedCentralCrossRef Johnson RF et al (2015) Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology 485:422–430PubMedPubMedCentralCrossRef
77.
81.
go back to reference Pascal KE et al (2015) Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 112(28):8738–8743PubMedPubMedCentralCrossRef Pascal KE et al (2015) Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 112(28):8738–8743PubMedPubMedCentralCrossRef
82.
go back to reference Cockrell A et al (2016) A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature Microbiology 2:16226 Cockrell A et al (2016) A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature Microbiology 2:16226
83.
go back to reference Li K et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences 114(15):E3119–E3128 Li K et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences 114(15):E3119–E3128
84.
go back to reference Frieman M et al (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824PubMedPubMedCentralCrossRef Frieman M et al (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824PubMedPubMedCentralCrossRef
85.
go back to reference Kindler E et al (2016) Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 96:219–243PubMedCrossRef Kindler E et al (2016) Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 96:219–243PubMedCrossRef
86.
go back to reference Narayanan K et al (2008) Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82(9):4471–4479PubMedPubMedCentralCrossRef Narayanan K et al (2008) Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82(9):4471–4479PubMedPubMedCentralCrossRef
87.
go back to reference Sun L et al (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7(2):e30802PubMedPubMedCentralCrossRef Sun L et al (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7(2):e30802PubMedPubMedCentralCrossRef
88.
go back to reference Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19(2):121–132PubMedCrossRef Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19(2):121–132PubMedCrossRef
89.
go back to reference Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current Opinion in Virology 2(3):264–275PubMedCrossRef Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current Opinion in Virology 2(3):264–275PubMedCrossRef
90.
go back to reference Wathelet MG et al (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633PubMedPubMedCentralCrossRef Wathelet MG et al (2007) Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81(21):11620–11633PubMedPubMedCentralCrossRef
91.
go back to reference Fehr AR et al (2016) The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 7(6):e01721–16 Fehr AR et al (2016) The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 7(6):e01721–16
92.
go back to reference Frieman M et al (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 83(13):6689–6705PubMedPubMedCentralCrossRef Frieman M et al (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 83(13):6689–6705PubMedPubMedCentralCrossRef
93.
go back to reference Kopecky-Bromberg SA et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81(2):548–557PubMedCrossRef Kopecky-Bromberg SA et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81(2):548–557PubMedCrossRef
94.
go back to reference Lu XL et al (2011) SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42(1):37–45PubMedCrossRef Lu XL et al (2011) SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42(1):37–45PubMedCrossRef
95.
go back to reference Siu KL et al (2014) Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11(2):141–149PubMedPubMedCentralCrossRef Siu KL et al (2014) Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11(2):141–149PubMedPubMedCentralCrossRef
96.
go back to reference Lui PY et al (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect 5:e39PubMedPubMedCentralCrossRef Lui PY et al (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect 5:e39PubMedPubMedCentralCrossRef
97.
go back to reference Yang Y et al (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4(12):951–961PubMedPubMedCentralCrossRef Yang Y et al (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4(12):951–961PubMedPubMedCentralCrossRef
99.
go back to reference Ng ML et al (2003) Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 84(Pt 12):3291–3303PubMedCrossRef Ng ML et al (2003) Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 84(Pt 12):3291–3303PubMedCrossRef
100.
go back to reference Oh MD et al (2016) Viral load kinetics of MERS coronavirus infection. N Engl J Med 375(13):1303–1305PubMedCrossRef Oh MD et al (2016) Viral load kinetics of MERS coronavirus infection. N Engl J Med 375(13):1303–1305PubMedCrossRef
101.
go back to reference Herold S et al (2008) Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065–3077PubMedPubMedCentralCrossRef Herold S et al (2008) Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065–3077PubMedPubMedCentralCrossRef
102.
go back to reference Hogner K et al (2013) Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 9(2):e1003188PubMedPubMedCentralCrossRef Hogner K et al (2013) Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 9(2):e1003188PubMedPubMedCentralCrossRef
103.
go back to reference Rodrigue-Gervais IG et al (2014) Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15(1):23–35PubMedCrossRef Rodrigue-Gervais IG et al (2014) Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15(1):23–35PubMedCrossRef
104.
go back to reference Zhao J et al (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325PubMedPubMedCentralCrossRef Zhao J et al (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325PubMedPubMedCentralCrossRef
106.
go back to reference Palm NW, Medzhitov R (2007) Not so fast: adaptive suppression of innate immunity. Nat Med 13(10):1142–1144PubMedCrossRef Palm NW, Medzhitov R (2007) Not so fast: adaptive suppression of innate immunity. Nat Med 13(10):1142–1144PubMedCrossRef
107.
go back to reference Zornetzer GA et al (2010) Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol 84(21):11297–11309PubMedPubMedCentralCrossRef Zornetzer GA et al (2010) Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol 84(21):11297–11309PubMedPubMedCentralCrossRef
108.
go back to reference Page C et al (2012) Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol 86(24):13334–13349PubMedPubMedCentralCrossRef Page C et al (2012) Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol 86(24):13334–13349PubMedPubMedCentralCrossRef
109.
110.
go back to reference Drosten C et al (2013) Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 13(9):745–751PubMedCrossRef Drosten C et al (2013) Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis 13(9):745–751PubMedCrossRef
111.
go back to reference Lew TW et al (2003) Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 290(3):374–380PubMedCrossRef Lew TW et al (2003) Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 290(3):374–380PubMedCrossRef
112.
go back to reference Jiang Y et al (2005) Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 171(8):850–857PubMedCrossRef Jiang Y et al (2005) Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 171(8):850–857PubMedCrossRef
113.
go back to reference Reghunathan R et al (2005) Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunology 6:2 Reghunathan R et al (2005) Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunology 6:2
115.
go back to reference Al-Tawfiq JA et al (2014) Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 20:42–46PubMedCrossRef Al-Tawfiq JA et al (2014) Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 20:42–46PubMedCrossRef
116.
go back to reference Falzarano D et al (2013) Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 19(10):1313–1317PubMedPubMedCentralCrossRef Falzarano D et al (2013) Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 19(10):1313–1317PubMedPubMedCentralCrossRef
117.
go back to reference Omrani AS et al (2014) Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 14(11):1090–1095PubMedCrossRef Omrani AS et al (2014) Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 14(11):1090–1095PubMedCrossRef
118.
go back to reference Auyeung TW et al (2005) The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect 51(2):98–102PubMedCrossRef Auyeung TW et al (2005) The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect 51(2):98–102PubMedCrossRef
119.
go back to reference Ho JC et al (2003) High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am J Respir Crit Care Med 168(12):1449–1456PubMedCrossRef Ho JC et al (2003) High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am J Respir Crit Care Med 168(12):1449–1456PubMedCrossRef
120.
go back to reference Yam LY et al (2007) Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect 54(1):28–39PubMedCrossRef Yam LY et al (2007) Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect 54(1):28–39PubMedCrossRef
121.
go back to reference Haagmans BL et al (2004) Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10(3):290–293PubMedCrossRef Haagmans BL et al (2004) Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10(3):290–293PubMedCrossRef
122.
go back to reference Zumla A et al (2016) Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–47 Zumla A et al (2016) Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–47
123.
go back to reference Davidson S et al (2016) IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol Med 8(9):1099–1112PubMedPubMedCentralCrossRef Davidson S et al (2016) IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol Med 8(9):1099–1112PubMedPubMedCentralCrossRef
124.
125.
go back to reference Imai Y et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249PubMedCrossRef Imai Y et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249PubMedCrossRef
127.
128.
go back to reference Walsh KB et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A 108(29):12018–12023PubMedPubMedCentralCrossRef Walsh KB et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A 108(29):12018–12023PubMedPubMedCentralCrossRef
129.
131.
go back to reference Darwish I et al (2011) Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 9(7):807–822PubMedCrossRef Darwish I et al (2011) Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 9(7):807–822PubMedCrossRef
132.
Metadata
Title
Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology
Authors
Rudragouda Channappanavar
Stanley Perlman
Publication date
01-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 5/2017
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-017-0629-x

Other articles of this Issue 5/2017

Seminars in Immunopathology 5/2017 Go to the issue