Skip to main content
Top
Published in: Seminars in Immunopathology 5/2017

01-07-2017 | Review

Molecular pathogenesis of viral hemorrhagic fever

Author: Christopher F. Basler

Published in: Seminars in Immunopathology | Issue 5/2017

Login to get access

Abstract

The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.
Literature
6.
go back to reference McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES (1987) A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155(3):437–444PubMedCrossRef McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES (1987) A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155(3):437–444PubMedCrossRef
8.
go back to reference Organization WH (2016) Situation report—Ebola virus disease 10 June 2016. Organization WH (2016) Situation report—Ebola virus disease 10 June 2016.
9.
go back to reference Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brauburger K, Rodney Brister J, Bukreyev AA, Cai Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Hoenen T, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Muhlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Volchkova VA, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch Virol 159(5):1229–1237. doi:10.1007/s00705-013-1877-2 PubMedPubMedCentral Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brauburger K, Rodney Brister J, Bukreyev AA, Cai Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Hoenen T, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Muhlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Volchkova VA, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch Virol 159(5):1229–1237. doi:10.​1007/​s00705-013-1877-2 PubMedPubMedCentral
10.
go back to reference Feldmann H, Sanchez A, Geisbert TW (2013) Filoviridae: Marburg and Ebola viruses. Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia Feldmann H, Sanchez A, Geisbert TW (2013) Filoviridae: Marburg and Ebola viruses. Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia
13.
go back to reference Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, Towner JS (2015) Experimental inoculation of Egyptian rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses 7(7):3420–3442. doi:10.3390/v7072779 PubMedPubMedCentralCrossRef Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, Towner JS (2015) Experimental inoculation of Egyptian rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses 7(7):3420–3442. doi:10.​3390/​v7072779 PubMedPubMedCentralCrossRef
15.
go back to reference Zaki SR, Goldsmith CS (1999) Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 235:97–116PubMed Zaki SR, Goldsmith CS (1999) Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 235:97–116PubMed
16.
go back to reference Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB (2000) Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Investig 80(2):171–186PubMedCrossRef Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB (2000) Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Investig 80(2):171–186PubMedCrossRef
17.
18.
go back to reference Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5(4):423–426PubMedCrossRef Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5(4):423–426PubMedCrossRef
19.
go back to reference Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, Scott DP, Kagan E, Jahrling PB, Davis KJ (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163(6):2347–2370PubMedPubMedCentralCrossRef Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, Scott DP, Kagan E, Jahrling PB, Davis KJ (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163(6):2347–2370PubMedPubMedCentralCrossRef
21.
go back to reference Reed DS, Hensley LE, Geisbert JB, Jahrling PB, Geisbert TW (2004) Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol 17(3):390–400PubMedCrossRef Reed DS, Hensley LE, Geisbert JB, Jahrling PB, Geisbert TW (2004) Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol 17(3):390–400PubMedCrossRef
22.
go back to reference Hensley LE, Young HA, Jahrling PB, Geisbert TW (2002) Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 80(3):169–179PubMedCrossRef Hensley LE, Young HA, Jahrling PB, Geisbert TW (2002) Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 80(3):169–179PubMedCrossRef
24.
go back to reference Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A (2003) Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188(11):1630–1638PubMedCrossRef Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A (2003) Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188(11):1630–1638PubMedCrossRef
25.
go back to reference Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170(6):2797–2801PubMedCrossRef Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170(6):2797–2801PubMedCrossRef
26.
go back to reference Sanchez A, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, Rollin PE (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78(19):10370–10377PubMedPubMedCentralCrossRef Sanchez A, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, Rollin PE (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78(19):10370–10377PubMedPubMedCentralCrossRef
27.
go back to reference Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, Lansoud-Soukate J, Mavoungou E (2002) Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 128(1):163–168PubMedPubMedCentralCrossRef Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, Lansoud-Soukate J, Mavoungou E (2002) Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 128(1):163–168PubMedPubMedCentralCrossRef
28.
go back to reference Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, Lipkin WI (2006) Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 20(14):2519–2530PubMedCrossRef Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, Lipkin WI (2006) Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 20(14):2519–2530PubMedCrossRef
30.
go back to reference Hutchinson KL, Rollin PE (2007) Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S357–S363PubMedCrossRef Hutchinson KL, Rollin PE (2007) Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S357–S363PubMedCrossRef
31.
go back to reference McElroy AK, Harmon JR, Flietstra TD, Campbell S, Mehta AK, Kraft CS, Lyon MG, Varkey JB, Ribner BS, Kratochvil CJ, Iwen PC, Smith PW, Ahmed R, Nichol ST, Spiropoulou CF (2016) Kinetic analysis of biomarkers in a cohort of US patients with Ebola virus disease. Clin Infect Dis 63(4):460–467. doi:10.1093/cid/ciw334 PubMedCrossRef McElroy AK, Harmon JR, Flietstra TD, Campbell S, Mehta AK, Kraft CS, Lyon MG, Varkey JB, Ribner BS, Kratochvil CJ, Iwen PC, Smith PW, Ahmed R, Nichol ST, Spiropoulou CF (2016) Kinetic analysis of biomarkers in a cohort of US patients with Ebola virus disease. Clin Infect Dis 63(4):460–467. doi:10.​1093/​cid/​ciw334 PubMedCrossRef
32.
go back to reference Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ (1999) Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1):S188–S191PubMedCrossRef Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ (1999) Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1):S188–S191PubMedCrossRef
33.
go back to reference Gupta M, Mahanty S, Ahmed R, Rollin PE (2001) Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284(1):20–25PubMedCrossRef Gupta M, Mahanty S, Ahmed R, Rollin PE (2001) Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284(1):20–25PubMedCrossRef
34.
go back to reference Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H (2001) Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75(22):11025–11033PubMedPubMedCentralCrossRef Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H (2001) Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75(22):11025–11033PubMedPubMedCentralCrossRef
35.
go back to reference Rollin PE, Bausch DG, Sanchez A (2007) Blood chemistry measurements and D-dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S364–S371. doi:10.1086/520613 PubMedCrossRef Rollin PE, Bausch DG, Sanchez A (2007) Blood chemistry measurements and D-dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S364–S371. doi:10.​1086/​520613 PubMedCrossRef
36.
go back to reference Isaacson MSP, Courteille G (1976) Clinical aspects of Ebola virus disease at the Ngaliema hospital, Kinshasa, Zaire, 1976. In: Ebola Virus Haemorrhagic Fever. Elsevier/North Holland Biomedical Press, New York Isaacson MSP, Courteille G (1976) Clinical aspects of Ebola virus disease at the Ngaliema hospital, Kinshasa, Zaire, 1976. In: Ebola Virus Haemorrhagic Fever. Elsevier/North Holland Biomedical Press, New York
37.
go back to reference Organization WH (1978) Ebola haemorrhagic fever in Sudan, 1976. Report of a WHO/International Study Team. Bull World Health Organ 58:247–270 Organization WH (1978) Ebola haemorrhagic fever in Sudan, 1976. Report of a WHO/International Study Team. Bull World Health Organ 58:247–270
38.
39.
go back to reference Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958PubMedCrossRef Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958PubMedCrossRef
40.
go back to reference Gibb TR, Bray M, Geisbert TW, Steele KE, Kell WM, Davis KJ, Jaax NK (2001) Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 125(4):233–242PubMedCrossRef Gibb TR, Bray M, Geisbert TW, Steele KE, Kell WM, Davis KJ, Jaax NK (2001) Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 125(4):233–242PubMedCrossRef
41.
42.
go back to reference Olejnik J, Forero A, Deflube LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Muhlberger E (2017) Ebolaviruses associated with differential pathogenicity induce distinct host responses in human macrophages. J Virol. doi:10.1128/JVI.00179-17 Olejnik J, Forero A, Deflube LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Muhlberger E (2017) Ebolaviruses associated with differential pathogenicity induce distinct host responses in human macrophages. J Virol. doi:10.​1128/​JVI.​00179-17
43.
44.
go back to reference Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, Swanepoel R, Burt FJ, Leman PA, Khan AS, Rowe AK, Mukunu R, Sanchez A, Peters CJ (1999) Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 179(Suppl 1):S177–S187. doi:10.1086/514321 PubMedCrossRef Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, Swanepoel R, Burt FJ, Leman PA, Khan AS, Rowe AK, Mukunu R, Sanchez A, Peters CJ (1999) Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 179(Suppl 1):S177–S187. doi:10.​1086/​514321 PubMedCrossRef
45.
go back to reference McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, Lyon GM, Ribner BS, Varkey J, Sidney J, Sette A, Campbell S, Stroher U, Damon I, Nichol ST, Spiropoulou CF, Ahmed R (2015) Human Ebola virus infection results in substantial immune activation. Proc Natl Acad Sci U S A 112(15):4719–4724. doi:10.1073/pnas.1502619112 PubMedPubMedCentralCrossRef McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, Lyon GM, Ribner BS, Varkey J, Sidney J, Sette A, Campbell S, Stroher U, Damon I, Nichol ST, Spiropoulou CF, Ahmed R (2015) Human Ebola virus infection results in substantial immune activation. Proc Natl Acad Sci U S A 112(15):4719–4724. doi:10.​1073/​pnas.​1502619112 PubMedPubMedCentralCrossRef
48.
go back to reference Cardenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martinez-Sobrido L, Saphire EO, Basler CF (2006) Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80(11):5168–5178PubMedPubMedCentralCrossRef Cardenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martinez-Sobrido L, Saphire EO, Basler CF (2006) Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80(11):5168–5178PubMedPubMedCentralCrossRef
49.
go back to reference Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72(11):8756–8764PubMedPubMedCentral Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72(11):8756–8764PubMedPubMedCentral
50.
go back to reference Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342PubMedPubMedCentral Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342PubMedPubMedCentral
51.
go back to reference Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J, Klenk HD, Garcia-Sastre A, Palese P (2000) The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97(22):12289–12294PubMedPubMedCentralCrossRef Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J, Klenk HD, Garcia-Sastre A, Palese P (2000) The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97(22):12289–12294PubMedPubMedCentralCrossRef
52.
go back to reference Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. doi:10.1128/JVI.02459-09 PubMedPubMedCentralCrossRef Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. doi:10.​1128/​JVI.​02459-09 PubMedPubMedCentralCrossRef
53.
go back to reference Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus. J Virol 82(6):2699–2704PubMedPubMedCentralCrossRef Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus. J Virol 82(6):2699–2704PubMedPubMedCentralCrossRef
57.
go back to reference Leung DW, Prins KC, Borek DM, Farahbakhsh M, Tufariello JM, Ramanan P, Nix JC, Helgeson LA, Otwinowski Z, Honzatko RB, Basler CF, Amarasinghe GK (2010) Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17(2):165–172. doi:10.1038/nsmb.1765 PubMedPubMedCentralCrossRef Leung DW, Prins KC, Borek DM, Farahbakhsh M, Tufariello JM, Ramanan P, Nix JC, Helgeson LA, Otwinowski Z, Honzatko RB, Basler CF, Amarasinghe GK (2010) Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17(2):165–172. doi:10.​1038/​nsmb.​1765 PubMedPubMedCentralCrossRef
58.
go back to reference Hartman AL, Ling L, Nichol ST, Hibberd ML (2008) Whole genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82:5348–5358PubMedPubMedCentralCrossRef Hartman AL, Ling L, Nichol ST, Hibberd ML (2008) Whole genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82:5348–5358PubMedPubMedCentralCrossRef
59.
go back to reference Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, Amarasinghe GK, Basler CF (2013) Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 14(1):74–84. doi:10.1016/j.chom.2013.06.010 PubMedCrossRef Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, Amarasinghe GK, Basler CF (2013) Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 14(1):74–84. doi:10.​1016/​j.​chom.​2013.​06.​010 PubMedCrossRef
60.
go back to reference Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMedCrossRef Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMedCrossRef
64.
go back to reference Albarino CG, Wiggleton Guerrero L, Spengler JR, Uebelhoer LS, Chakrabarti AK, Nichol ST, Towner JS (2015) Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of host immune responses. Virology 476:85–91. doi:10.1016/j.virol.2014.12.002 PubMedCrossRef Albarino CG, Wiggleton Guerrero L, Spengler JR, Uebelhoer LS, Chakrabarti AK, Nichol ST, Towner JS (2015) Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of host immune responses. Virology 476:85–91. doi:10.​1016/​j.​virol.​2014.​12.​002 PubMedCrossRef
68.
go back to reference Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K, Page A, Volchkova VA, Volchkov VE (2011) VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204(Suppl 3):S1011–S1020. doi:10.1093/infdis/jir338 PubMedCrossRef Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K, Page A, Volchkova VA, Volchkov VE (2011) VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204(Suppl 3):S1011–S1020. doi:10.​1093/​infdis/​jir338 PubMedCrossRef
70.
go back to reference Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81(24):13469–13477PubMedPubMedCentralCrossRef Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81(24):13469–13477PubMedPubMedCentralCrossRef
71.
go back to reference Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ, Pappu RV, Leung DW, Basler CF, Amarasinghe GK (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200. doi:10.1016/j.chom.2014.07.008 PubMedPubMedCentralCrossRef Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ, Pappu RV, Leung DW, Basler CF, Amarasinghe GK (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200. doi:10.​1016/​j.​chom.​2014.​07.​008 PubMedPubMedCentralCrossRef
77.
go back to reference Martinez O, Johnson JC, Honko A, Yen B, Shabman RS, Hensley LE, Olinger GG, Basler CF (2013) Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol. doi:10.1128/JVI.02695-12 Martinez O, Johnson JC, Honko A, Yen B, Shabman RS, Hensley LE, Olinger GG, Basler CF (2013) Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol. doi:10.​1128/​JVI.​02695-12
79.
go back to reference Okumura A, Pitha PM, Yoshimura A, Harty RN (2010) Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84(1):27–33. doi:10.1128/JVI.01462-09 PubMedCrossRef Okumura A, Pitha PM, Yoshimura A, Harty RN (2010) Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84(1):27–33. doi:10.​1128/​JVI.​01462-09 PubMedCrossRef
80.
go back to reference Buchmeier MJ, de la Torre JC, Peters CJ (2013) Arenaviridae. Fields Virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia Buchmeier MJ, de la Torre JC, Peters CJ (2013) Arenaviridae. Fields Virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia
81.
82.
go back to reference Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V (2004) Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172(5):2861–2869PubMedCrossRef Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V (2004) Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172(5):2861–2869PubMedCrossRef
84.
go back to reference Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S (2011) Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 85(16):8293–8306. doi:10.1128/JVI.02120-10 PubMedPubMedCentralCrossRef Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S (2011) Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 85(16):8293–8306. doi:10.​1128/​JVI.​02120-10 PubMedPubMedCentralCrossRef
86.
89.
94.
go back to reference Monath TP, Barrett AD (2003) Pathogenesis and pathophysiology of yellow fever. Adv Virus Res 60:343–395PubMedCrossRef Monath TP, Barrett AD (2003) Pathogenesis and pathophysiology of yellow fever. Adv Virus Res 60:343–395PubMedCrossRef
98.
go back to reference Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JM, Pisanelli G, Pham A, Ayllon J, Miorin L, Martinez-Romero C, tenOever BR, Garcia-Sastre A (2014) The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16(3):314–327. doi:10.1016/j.chom.2014.07.015 PubMedPubMedCentralCrossRef Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JM, Pisanelli G, Pham A, Ayllon J, Miorin L, Martinez-Romero C, tenOever BR, Garcia-Sastre A (2014) The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16(3):314–327. doi:10.​1016/​j.​chom.​2014.​07.​015 PubMedPubMedCentralCrossRef
99.
go back to reference Fernandez-Garcia MD, Meertens L, Chazal M, Hafirassou ML, Dejarnac O, Zamborlini A, Despres P, Sauvonnet N, Arenzana-Seisdedos F, Jouvenet N, Amara A (2016) Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. MBio 7(1):e01956–e01915. doi:10.1128/mBio.01956-15 PubMedPubMedCentralCrossRef Fernandez-Garcia MD, Meertens L, Chazal M, Hafirassou ML, Dejarnac O, Zamborlini A, Despres P, Sauvonnet N, Arenzana-Seisdedos F, Jouvenet N, Amara A (2016) Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. MBio 7(1):e01956–e01915. doi:10.​1128/​mBio.​01956-15 PubMedPubMedCentralCrossRef
100.
go back to reference Stephen EL, Sammons ML, Pannier WL, Baron S, Spertzel RO, Levy HB (1977) Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta). J Infect Dis 136(1):122–126PubMedCrossRef Stephen EL, Sammons ML, Pannier WL, Baron S, Spertzel RO, Levy HB (1977) Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta). J Infect Dis 136(1):122–126PubMedCrossRef
101.
go back to reference Arroyo JI, Apperson SA, Cropp CB, Marafino BJ Jr, Monath TP, Tesh RB, Shope RE, Garcia-Blanco MA (1988) Effect of human gamma interferon on yellow fever virus infection. AmJTrop Med Hyg 38(3):647–650 Arroyo JI, Apperson SA, Cropp CB, Marafino BJ Jr, Monath TP, Tesh RB, Shope RE, Garcia-Blanco MA (1988) Effect of human gamma interferon on yellow fever virus infection. AmJTrop Med Hyg 38(3):647–650
102.
go back to reference Monath TP, Brinker KR, Chandler FW, Kemp GE, Cropp CB (1981) Pathophysiologic correlations in a rhesus monkey model of yellow fever with special observations on the acute necrosis of B cell areas of lymphoid tissues. AmJTrop Med Hyg 30(2):431–443CrossRef Monath TP, Brinker KR, Chandler FW, Kemp GE, Cropp CB (1981) Pathophysiologic correlations in a rhesus monkey model of yellow fever with special observations on the acute necrosis of B cell areas of lymphoid tissues. AmJTrop Med Hyg 30(2):431–443CrossRef
104.
go back to reference ter Meulen J, Sakho M, Koulemou K, Magassouba N, Bah A, Preiser W, Daffis S, Klewitz C, Bae HG, Niedrig M, Zeller H, Heinzel-Gutenbrunner M, Koivogui L, Kaufmann A (2004) Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis 190(10):1821–1827. doi:10.1086/425016 PubMedCrossRef ter Meulen J, Sakho M, Koulemou K, Magassouba N, Bah A, Preiser W, Daffis S, Klewitz C, Bae HG, Niedrig M, Zeller H, Heinzel-Gutenbrunner M, Koivogui L, Kaufmann A (2004) Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis 190(10):1821–1827. doi:10.​1086/​425016 PubMedCrossRef
105.
go back to reference Kuhn JH, Clawson AN, Rodoshitzky SR, Wahl-Jensen V, Bavari S, Jahrling PB (2014) Viral hemorrhagic fevers: history and definitions. In: Singh SK, Ruzek D (eds) Viral hemorrhagic fevers. CRC Press, Boca Raton Kuhn JH, Clawson AN, Rodoshitzky SR, Wahl-Jensen V, Bavari S, Jahrling PB (2014) Viral hemorrhagic fevers: history and definitions. In: Singh SK, Ruzek D (eds) Viral hemorrhagic fevers. CRC Press, Boca Raton
106.
go back to reference Feldmann H, Bugany H, Mahner F, Klenk HD, Drenckhahn D, Schnittler HJ (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70(4):2208–2214PubMedPubMedCentral Feldmann H, Bugany H, Mahner F, Klenk HD, Drenckhahn D, Schnittler HJ (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70(4):2208–2214PubMedPubMedCentral
107.
go back to reference Geisbert TW, Hensley LE (2004) Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 6(20):1–24PubMedCrossRef Geisbert TW, Hensley LE (2004) Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 6(20):1–24PubMedCrossRef
108.
go back to reference Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE (2003) Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 188(11):1618–1629PubMedCrossRef Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE (2003) Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 188(11):1618–1629PubMedCrossRef
110.
go back to reference Baize S, Leroy EM, Mavoungou E, Fisher-Hoch SP (2000) Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 5(1):5–7PubMedCrossRef Baize S, Leroy EM, Mavoungou E, Fisher-Hoch SP (2000) Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 5(1):5–7PubMedCrossRef
111.
go back to reference Bradfute SB, Braun DR, Shamblin JD, Geisbert JB, Paragas J, Garrison A, Hensley LE, Geisbert TW (2007) Lymphocyte death in a mouse model of Ebola virus infection. J Infect Dis 196(Suppl 2):S296–S304. doi:10.1086/520602 PubMedCrossRef Bradfute SB, Braun DR, Shamblin JD, Geisbert JB, Paragas J, Garrison A, Hensley LE, Geisbert TW (2007) Lymphocyte death in a mouse model of Ebola virus infection. J Infect Dis 196(Suppl 2):S296–S304. doi:10.​1086/​520602 PubMedCrossRef
112.
go back to reference Bradfute SB, Warfield KL, Bavari S (2008) Functional CD8+ T cell responses in lethal Ebola virus infection. J Immunol 180(6):4058–4066PubMedCrossRef Bradfute SB, Warfield KL, Bavari S (2008) Functional CD8+ T cell responses in lethal Ebola virus infection. J Immunol 180(6):4058–4066PubMedCrossRef
Metadata
Title
Molecular pathogenesis of viral hemorrhagic fever
Author
Christopher F. Basler
Publication date
01-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 5/2017
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-017-0637-x

Other articles of this Issue 5/2017

Seminars in Immunopathology 5/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.