Skip to main content
Top
Published in: Seminars in Immunopathology 6/2015

01-11-2015 | Review

β-amyloid, microglia, and the inflammasome in Alzheimer’s disease

Authors: Maike Gold, Joseph El Khoury

Published in: Seminars in Immunopathology | Issue 6/2015

Login to get access

Abstract

There is extensive evidence that accumulation of mononuclear phagocytes including microglial cells, monocytes, and macrophages at sites of β-amyloid (Aβ) deposition in the brain is an important pathological feature of Alzheimer’s disease (AD) and related animal models, and the concentration of these cells clustered around Aβ deposits is several folds higher than in neighboring areas of the brain [1–5]. Microglial cells phagocytose and clear debris, pathogens, and toxins, but they can also be activated to produce inflammatory cytokines, chemokines, and neurotoxins [6]. Over the past decade, the roles of microglial cells in AD have begun to be clarified, and we proposed that these cells play a dichotomous role in the pathogenesis of AD [4, 6–11]. Microglial cells are able to clear soluble and fibrillar Aβ, but continued interactions of these cells with Aβ can lead to an inflammatory response resulting in neurotoxicity. Inflammasomes are inducible high molecular weight protein complexes that are involved in many inflammatory pathological processes. Recently, Aβ was found to activate the NLRP3 inflammasome in microglial cells in vitro and in vivo thereby defining a novel pathway that could lead to progression of AD [12–14]. In this manuscript, we review possible steps leading to Aβ-induced inflammasome activation and discuss how this could contribute to the pathogenesis of AD.
Literature
1.
go back to reference McGeer PL et al (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1-2):195–200CrossRefPubMed McGeer PL et al (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1-2):195–200CrossRefPubMed
2.
go back to reference Rozemuller JM, Eikelenboom P, Stam FC (1986) Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 51(3):247–54CrossRefPubMed Rozemuller JM, Eikelenboom P, Stam FC (1986) Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 51(3):247–54CrossRefPubMed
3.
4.
go back to reference Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 28(33):8354–60PubMedCentralCrossRefPubMed Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 28(33):8354–60PubMedCentralCrossRefPubMed
7.
go back to reference El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–32CrossRefPubMed El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–32CrossRefPubMed
8.
go back to reference El Khoury J et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–8CrossRefPubMed El Khoury J et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–8CrossRefPubMed
10.
go back to reference Frenkel D et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 4:2030PubMedCentralCrossRefPubMed Frenkel D et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 4:2030PubMedCentralCrossRefPubMed
11.
go back to reference Stewart CR et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–61PubMedCentralCrossRefPubMed Stewart CR et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–61PubMedCentralCrossRefPubMed
13.
go back to reference Heneka MT et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–8CrossRefPubMed Heneka MT et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–8CrossRefPubMed
14.
go back to reference Sheedy FJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14(8):812–20PubMedCentralCrossRefPubMed Sheedy FJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14(8):812–20PubMedCentralCrossRefPubMed
15.
go back to reference Lawson LJ et al (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–70CrossRefPubMed Lawson LJ et al (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–70CrossRefPubMed
16.
go back to reference Hickman SE et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–905CrossRefPubMed Hickman SE et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–905CrossRefPubMed
17.
go back to reference Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–66CrossRefPubMed Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–66CrossRefPubMed
18.
go back to reference Mogi M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from Parkinsonian patients. Neurosci Lett 180(2):147–50CrossRefPubMed Mogi M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from Parkinsonian patients. Neurosci Lett 180(2):147–50CrossRefPubMed
19.
go back to reference Morimoto K et al (2011) Expression profiles of cytokines in the brains of Alzheimer's disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 25(1):59–76PubMedCentralPubMed Morimoto K et al (2011) Expression profiles of cytokines in the brains of Alzheimer's disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 25(1):59–76PubMedCentralPubMed
20.
go back to reference Stoeck K, Bodemer M, Zerr I (2006) Pro- and anti-inflammatory cytokines in the CSF of patients with Creutzfeldt-Jakob disease. J Neuroimmunol 172(1-2):175–81CrossRefPubMed Stoeck K, Bodemer M, Zerr I (2006) Pro- and anti-inflammatory cytokines in the CSF of patients with Creutzfeldt-Jakob disease. J Neuroimmunol 172(1-2):175–81CrossRefPubMed
21.
go back to reference Coraci IS et al (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160(1):101–12PubMedCentralCrossRefPubMed Coraci IS et al (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160(1):101–12PubMedCentralCrossRefPubMed
22.
go back to reference Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90CrossRefPubMed Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90CrossRefPubMed
23.
go back to reference Cho S et al (2001) Repression of proinflammatory cytokine and inducible nitric oxide synthase (NOS2) gene expression in activated microglia by N-acetyl-O-methyldopamine: protein kinase A-dependent mechanism. Glia 33(4):324–33CrossRefPubMed Cho S et al (2001) Repression of proinflammatory cytokine and inducible nitric oxide synthase (NOS2) gene expression in activated microglia by N-acetyl-O-methyldopamine: protein kinase A-dependent mechanism. Glia 33(4):324–33CrossRefPubMed
24.
go back to reference Yates SL et al (2000) Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74(3):1017–25CrossRefPubMed Yates SL et al (2000) Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74(3):1017–25CrossRefPubMed
25.
go back to reference Goodwin JL, Kehrli ME Jr, Uemura E (1997) Integrin Mac-1 and beta-amyloid in microglial release of nitric oxide. Brain Res 768(1-2):279–86CrossRefPubMed Goodwin JL, Kehrli ME Jr, Uemura E (1997) Integrin Mac-1 and beta-amyloid in microglial release of nitric oxide. Brain Res 768(1-2):279–86CrossRefPubMed
26.
go back to reference Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–26CrossRefPubMed Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–26CrossRefPubMed
27.
go back to reference Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–4CrossRefPubMed Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–4CrossRefPubMed
28.
go back to reference Mariathasan S et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–32CrossRefPubMed Mariathasan S et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–32CrossRefPubMed
29.
go back to reference Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–8CrossRefPubMed Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–8CrossRefPubMed
30.
31.
go back to reference Gross O et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–6CrossRefPubMed Gross O et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–6CrossRefPubMed
33.
go back to reference Martinon F et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–41CrossRefPubMed Martinon F et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–41CrossRefPubMed
34.
37.
go back to reference Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–91PubMedCentralCrossRefPubMed Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–91PubMedCentralCrossRefPubMed
38.
go back to reference Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183(2):792–6PubMedCentralCrossRefPubMed Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183(2):792–6PubMedCentralCrossRefPubMed
39.
go back to reference Chow JC et al (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274(16):10689–92CrossRefPubMed Chow JC et al (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274(16):10689–92CrossRefPubMed
40.
41.
go back to reference Duncan JA et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–6PubMedCentralCrossRefPubMed Duncan JA et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–6PubMedCentralCrossRefPubMed
42.
go back to reference Srinivasula SM et al (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277(24):21119–22CrossRefPubMed Srinivasula SM et al (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277(24):21119–22CrossRefPubMed
43.
go back to reference Baroja-Mazo A et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15(8):738–48CrossRefPubMed Baroja-Mazo A et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15(8):738–48CrossRefPubMed
44.
45.
go back to reference Yan Y et al (2015) Dopamine Controls Systemic Inflammation through Inhibition of NLRP3 Inflammasome. Cell 160(1-2):62–73CrossRefPubMed Yan Y et al (2015) Dopamine Controls Systemic Inflammation through Inhibition of NLRP3 Inflammasome. Cell 160(1-2):62–73CrossRefPubMed
48.
go back to reference Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255PubMedCentralPubMed Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255PubMedCentralPubMed
49.
go back to reference Griffin WS et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86(19):7611–5PubMedCentralCrossRefPubMed Griffin WS et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86(19):7611–5PubMedCentralCrossRefPubMed
50.
go back to reference Murphy N, Grehan B, Lynch MA (2014) Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromol Med 16(1):205–15CrossRef Murphy N, Grehan B, Lynch MA (2014) Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromol Med 16(1):205–15CrossRef
51.
go back to reference Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol 286(5):C1100–8CrossRefPubMed Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol 286(5):C1100–8CrossRefPubMed
52.
go back to reference McLarnon JG et al (2006) Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65(11):1090–7CrossRefPubMed McLarnon JG et al (2006) Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65(11):1090–7CrossRefPubMed
53.
go back to reference Kahlenberg JM et al (2005) Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol 175(11):7611–22CrossRefPubMed Kahlenberg JM et al (2005) Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol 175(11):7611–22CrossRefPubMed
54.
go back to reference Wegiel J et al (2003) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 105(4):393–402PubMed Wegiel J et al (2003) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 105(4):393–402PubMed
55.
go back to reference Lebson L et al (2010) Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30(29):9651–8PubMedCentralCrossRefPubMed Lebson L et al (2010) Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30(29):9651–8PubMedCentralCrossRefPubMed
56.
go back to reference Bennett JL et al (2003) CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 9(6):623–36PubMed Bennett JL et al (2003) CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 9(6):623–36PubMed
57.
go back to reference Sedgwick JD et al (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88(16):7438–42PubMedCentralCrossRefPubMed Sedgwick JD et al (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88(16):7438–42PubMedCentralCrossRefPubMed
58.
go back to reference Saederup N et al (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10):e13693PubMedCentralCrossRefPubMed Saederup N et al (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10):e13693PubMedCentralCrossRefPubMed
59.
go back to reference Naert G, Rivest S (2012) Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer's disease. Mol Med 18:297–313PubMedCentralCrossRefPubMed Naert G, Rivest S (2012) Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer's disease. Mol Med 18:297–313PubMedCentralCrossRefPubMed
60.
go back to reference Jay TR et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med 212(3):287–295PubMedCentralCrossRefPubMed Jay TR et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med 212(3):287–295PubMedCentralCrossRefPubMed
61.
go back to reference Koronyo Y et al (2015) Therapeutic effects of glatiramer acetate and grafted CD115+ monocytes in a mouse model of Alzheimer's disease. Brain 138(8):2399–2422CrossRefPubMed Koronyo Y et al (2015) Therapeutic effects of glatiramer acetate and grafted CD115+ monocytes in a mouse model of Alzheimer's disease. Brain 138(8):2399–2422CrossRefPubMed
Metadata
Title
β-amyloid, microglia, and the inflammasome in Alzheimer’s disease
Authors
Maike Gold
Joseph El Khoury
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 6/2015
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0518-0

Other articles of this Issue 6/2015

Seminars in Immunopathology 6/2015 Go to the issue