Skip to main content
Top
Published in: Seminars in Immunopathology 1/2012

Open Access 01-01-2012 | Review

Endothelium—role in regulation of coagulation and inflammation

Author: Victor W. M. van Hinsbergh

Published in: Seminars in Immunopathology | Issue 1/2012

Login to get access

Abstract

By its strategic position at the interface between blood and tissues, endothelial cells control blood fluidity and continued tissue perfusion while simultaneously they direct inflammatory cells to areas in need of defense or repair. The endothelial response depends on specific tissue needs and adapts to local stresses. Endothelial cells counteract coagulation by providing tissue factor and thrombin inhibitors and receptors for protein C activation. The receptor PAR-1 is differentially activated by thrombin and the activated protein C/EPCR complex, resulting in antithrombotic and anti-inflammatory effects. Thrombin and vasoactive agents release von Willebrand factor as ultra-large platelet-binding multimers, which are cleaved by ADAMTS13. Platelets can also facilitate leukocyte-endothelium interaction. Platelet activation is prevented by nitric oxide, prostacyclin, and exonucleotidases. Thrombin-cleaved ADAMTS18 induces disintegration of platelet aggregates while tissue-type plasminogen activator initiates fibrinolysis. Fibrin and products of platelets and inflammatory cells modulate the angiogenic response of endothelial cells and contribute to tissue repair.
Literature
1.
go back to reference Gimbrone MA et al (1986) Vascular endothelium: nature's blood container. In: Vascular endothelium in hemostasis and thrombosis. Churchill Livingstone, New York, pp 1–13 Gimbrone MA et al (1986) Vascular endothelium: nature's blood container. In: Vascular endothelium in hemostasis and thrombosis. Churchill Livingstone, New York, pp 1–13
2.
go back to reference Wolinsky H (1980) A proposal linking clearance of circulating lipoproteins to tissue metabolic-activity as a basis for understanding atherogenesis. Circ Res 47:301–311PubMed Wolinsky H (1980) A proposal linking clearance of circulating lipoproteins to tissue metabolic-activity as a basis for understanding atherogenesis. Circ Res 47:301–311PubMed
3.
go back to reference Aird WC (2007) Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRef Aird WC (2007) Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRef
4.
go back to reference Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367PubMedCrossRef Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367PubMedCrossRef
5.
go back to reference Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815PubMedCrossRef Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815PubMedCrossRef
6.
go back to reference Semenza GL (2010) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30:648–652PubMedCrossRef Semenza GL (2010) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30:648–652PubMedCrossRef
7.
go back to reference Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165–189PubMedCrossRef Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165–189PubMedCrossRef
8.
go back to reference Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179PubMedCrossRef Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179PubMedCrossRef
9.
go back to reference Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MAJ, Balasubramanian V, Garcia-Cardena G, Jain MK (2005) Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96:e48–e57PubMedCrossRef Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MAJ, Balasubramanian V, Garcia-Cardena G, Jain MK (2005) Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96:e48–e57PubMedCrossRef
10.
go back to reference Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJM, Biessen EAL, van Berkel TJC, Pannekoek H, Horrevoets AJG (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618PubMedCrossRef Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJM, Biessen EAL, van Berkel TJC, Pannekoek H, Horrevoets AJG (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618PubMedCrossRef
11.
go back to reference Parmar KM, Larman HB, Dai GH, Zhang YH, Wang ET, Moorthy SN, Kratz JR, Lin ZY, Jain MK, Gimbrone MA, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Investig 116:49–58PubMedCrossRef Parmar KM, Larman HB, Dai GH, Zhang YH, Wang ET, Moorthy SN, Kratz JR, Lin ZY, Jain MK, Gimbrone MA, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Investig 116:49–58PubMedCrossRef
12.
go back to reference Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, Van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628PubMedCrossRef Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, Van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628PubMedCrossRef
13.
go back to reference Defilippi P, Vanhinsbergh V, Bertolotto A, Rossino P, Silengo L, Tarone G (1991) Differential distribution and modulation of expression of alpha1/beta1 integrin on human endothelial-cells. J Cell Biol 114:855–863PubMedCrossRef Defilippi P, Vanhinsbergh V, Bertolotto A, Rossino P, Silengo L, Tarone G (1991) Differential distribution and modulation of expression of alpha1/beta1 integrin on human endothelial-cells. J Cell Biol 114:855–863PubMedCrossRef
14.
go back to reference Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S (2009) The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114:478–484PubMedCrossRef Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S (2009) The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114:478–484PubMedCrossRef
15.
go back to reference Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha-4-Beta-7-integrin mediates lymphocyte binding to the mucosal vascular addressin Madcam-1. Cell 74:185–195PubMedCrossRef Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha-4-Beta-7-integrin mediates lymphocyte binding to the mucosal vascular addressin Madcam-1. Cell 74:185–195PubMedCrossRef
16.
go back to reference Laszik Z, Mitro A, Taylor FB, Ferrell G, Esmon CT (1997) Human protein C receptor is present primarily on endothelium of large blood vessels - Implications for the control of the protein C pathway. Circulation 96:3633–3640PubMed Laszik Z, Mitro A, Taylor FB, Ferrell G, Esmon CT (1997) Human protein C receptor is present primarily on endothelium of large blood vessels - Implications for the control of the protein C pathway. Circulation 96:3633–3640PubMed
17.
go back to reference Aird WC (2007) Phenotypic heterogeneity of the endothelium II. Representative vascular beds. Circ Res 100:174–190PubMedCrossRef Aird WC (2007) Phenotypic heterogeneity of the endothelium II. Representative vascular beds. Circ Res 100:174–190PubMedCrossRef
18.
go back to reference vanSetten PA, vanHinsbergh VWM, vanderVelden TJAN, vandeKar NCAJ, Vermeer M, Mahan JD, Assmann KJM, vandenHeuvel LPWJ, Monnens LAH (1997) Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int 51:1245–1256CrossRef vanSetten PA, vanHinsbergh VWM, vanderVelden TJAN, vandeKar NCAJ, Vermeer M, Mahan JD, Assmann KJM, vandenHeuvel LPWJ, Monnens LAH (1997) Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int 51:1245–1256CrossRef
19.
go back to reference Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, Mcever RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, Mccrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561PubMed Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, Mcever RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, Mccrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561PubMed
20.
go back to reference Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24:97–106PubMedCrossRef Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24:97–106PubMedCrossRef
21.
go back to reference Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Canc 8:851–864CrossRef Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Canc 8:851–864CrossRef
22.
go back to reference Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The I kappa B-NF-kappa B signaling module: temporal control and selective gene activation. Science 298:1241–1245PubMedCrossRef Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The I kappa B-NF-kappa B signaling module: temporal control and selective gene activation. Science 298:1241–1245PubMedCrossRef
23.
go back to reference Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166:2018–2024PubMed Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166:2018–2024PubMed
24.
25.
go back to reference Bista P, Zeng WK, Ryan S, Bailly V, Browning JL, Lukashev ME (2010) TRAF3 controls activation of the canonical and alternative NF kappa B by the lymphotoxin beta receptor. J Biol Chem 285:12971–12978PubMedCrossRef Bista P, Zeng WK, Ryan S, Bailly V, Browning JL, Lukashev ME (2010) TRAF3 controls activation of the canonical and alternative NF kappa B by the lymphotoxin beta receptor. J Biol Chem 285:12971–12978PubMedCrossRef
26.
go back to reference Qian HS, Neplioueva V, Shetty CA, Channon KM, George SE (1999) Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 99:2979–2982PubMed Qian HS, Neplioueva V, Shetty CA, Channon KM, George SE (1999) Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 99:2979–2982PubMed
27.
go back to reference Sen-Banerjee S, Mir S, Lin ZY, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK (2005) KLF2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726PubMedCrossRef Sen-Banerjee S, Mir S, Lin ZY, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK (2005) KLF2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726PubMedCrossRef
28.
go back to reference Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermohlen O, Bruning JC, Schutze S, Kronke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163PubMedCrossRef Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermohlen O, Bruning JC, Schutze S, Kronke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163PubMedCrossRef
29.
go back to reference Gu JM, Katsuura Y, Ferrell GL, Grammas P, Esmon CT (2000) Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood 95:1687–1693PubMed Gu JM, Katsuura Y, Ferrell GL, Grammas P, Esmon CT (2000) Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood 95:1687–1693PubMed
30.
go back to reference Wu HL, Lin CI, Huang YL, Chen PS, Kuo CH, Chen MS, Wu GCC, Shi GY, Yang HY, Lee H (2008) Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun 367:162–168PubMedCrossRef Wu HL, Lin CI, Huang YL, Chen PS, Kuo CH, Chen MS, Wu GCC, Shi GY, Yang HY, Lee H (2008) Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun 367:162–168PubMedCrossRef
31.
go back to reference Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33PubMedCrossRef Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33PubMedCrossRef
32.
go back to reference Nieuwdorp M, van Haeften TW, Gouverneur MCLG, Mooij HL, van Lieshout MHP, Levi M, Meijers JCM, Holleman F, Hoekstra JBL, Vink H, Kastelein JJP, Stroes ESG (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486PubMedCrossRef Nieuwdorp M, van Haeften TW, Gouverneur MCLG, Mooij HL, van Lieshout MHP, Levi M, Meijers JCM, Holleman F, Hoekstra JBL, Vink H, Kastelein JJP, Stroes ESG (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486PubMedCrossRef
33.
go back to reference Vlodavsky I, Eldor A, Haimovitzfriedman A, Matzner Y, Ishaimichaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparanase by platelets and circulating cells of the immune-system - possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed Vlodavsky I, Eldor A, Haimovitzfriedman A, Matzner Y, Ishaimichaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparanase by platelets and circulating cells of the immune-system - possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed
34.
go back to reference Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, Vanhinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325PubMedCrossRef Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, Vanhinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325PubMedCrossRef
35.
go back to reference Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20:524–534PubMedCrossRef Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20:524–534PubMedCrossRef
36.
go back to reference Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022PubMed Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022PubMed
38.
go back to reference Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8:1175–1180PubMedCrossRef Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8:1175–1180PubMedCrossRef
40.
go back to reference Osterud B, Bajaj MS, Bajaj SP (1995) Sites of tissue factor pathway inhibitor (Tfpi) and tissue factor expression under physiological and pathological conditions. Thromb Haemost 73:873–875PubMed Osterud B, Bajaj MS, Bajaj SP (1995) Sites of tissue factor pathway inhibitor (Tfpi) and tissue factor expression under physiological and pathological conditions. Thromb Haemost 73:873–875PubMed
41.
go back to reference White TA, Johnson T, Zarzhevsky N, Tom C, Delacroix S, Holroyd EW, Maroney SA, Singh R, Pan SC, Fay WP, van Deursen J, Mast AE, Sandhu GS, Simari RD (2010) Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis. Blood 116:1787–1794PubMedCrossRef White TA, Johnson T, Zarzhevsky N, Tom C, Delacroix S, Holroyd EW, Maroney SA, Singh R, Pan SC, Fay WP, van Deursen J, Mast AE, Sandhu GS, Simari RD (2010) Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis. Blood 116:1787–1794PubMedCrossRef
42.
go back to reference Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human-tissues - implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097PubMed Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human-tissues - implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097PubMed
43.
go back to reference Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27:1687–1693PubMedCrossRef Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27:1687–1693PubMedCrossRef
44.
go back to reference Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N (1983) Cultured human-endothelial cells generate tissue factor in response to endotoxin. J Clin Investig 71:1893–1896PubMedCrossRef Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N (1983) Cultured human-endothelial cells generate tissue factor in response to endotoxin. J Clin Investig 71:1893–1896PubMedCrossRef
45.
go back to reference Lupu C, Westmuckett AD, Peer G, Ivanciu L, Zhu H, Taylor FB, Lupu F (2005) Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model of Escherichia coli sepsis. Am J Pathol 167:1161–1172PubMedCrossRef Lupu C, Westmuckett AD, Peer G, Ivanciu L, Zhu H, Taylor FB, Lupu F (2005) Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model of Escherichia coli sepsis. Am J Pathol 167:1161–1172PubMedCrossRef
46.
go back to reference Contrino J, Hair G, Kreutzer DL, Rickles FR (1996) In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 2:209–215PubMedCrossRef Contrino J, Hair G, Kreutzer DL, Rickles FR (1996) In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 2:209–215PubMedCrossRef
47.
go back to reference Ryan J, Brett J, Tijburg P, Bach RR, Kisiel W, Stern D (1992) Tumor necrosis factor-induced endothelial tissue factor is associated with subendothelial matrix vesicles but is not expressed on the apical surface. Blood 80:966–974PubMed Ryan J, Brett J, Tijburg P, Bach RR, Kisiel W, Stern D (1992) Tumor necrosis factor-induced endothelial tissue factor is associated with subendothelial matrix vesicles but is not expressed on the apical surface. Blood 80:966–974PubMed
48.
go back to reference Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, gnat-George F (1999) In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Investig 104:93–102PubMedCrossRef Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, gnat-George F (1999) In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Investig 104:93–102PubMedCrossRef
49.
go back to reference Tushuizen ME, Diamant M, Sturk A, Nieuwland R (2011) Cell-derived microparticles in the pathogenesis of cardiovascular disease friend or foe? Arterioscler Thromb Vasc Biol 31:4–9PubMedCrossRef Tushuizen ME, Diamant M, Sturk A, Nieuwland R (2011) Cell-derived microparticles in the pathogenesis of cardiovascular disease friend or foe? Arterioscler Thromb Vasc Biol 31:4–9PubMedCrossRef
50.
go back to reference Egorina EM, Sovershaev MA, Olsen JO, Osterud B (2008) Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood 111:1208–1216PubMedCrossRef Egorina EM, Sovershaev MA, Olsen JO, Osterud B (2008) Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood 111:1208–1216PubMedCrossRef
51.
go back to reference Solovey A, Kollander R, Milbauer LC, Abdulla F, Chen YIE, Kelm RJ, Hebbel RP (2010) Endothelial nitric oxide synthase and nitric oxide regulate endothelial tissue factor expression in vivo in the sickle transgenic mouse. Am J Hematol 85:41–45PubMed Solovey A, Kollander R, Milbauer LC, Abdulla F, Chen YIE, Kelm RJ, Hebbel RP (2010) Endothelial nitric oxide synthase and nitric oxide regulate endothelial tissue factor expression in vivo in the sickle transgenic mouse. Am J Hematol 85:41–45PubMed
52.
go back to reference Jasuja R, Furie B, Furie BC (2010) Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood 116:4665–4674PubMedCrossRef Jasuja R, Furie B, Furie BC (2010) Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood 116:4665–4674PubMedCrossRef
53.
go back to reference Bauer KA, Rosenberg RD (1991) Role of antithrombin-iii as a regulator of invivo coagulation. Semin Hematol 28:10–18PubMed Bauer KA, Rosenberg RD (1991) Role of antithrombin-iii as a regulator of invivo coagulation. Semin Hematol 28:10–18PubMed
54.
go back to reference Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW (1986) Thrombomodulin, an endothelial anticoagulant protein, is absent from the human-brain. Blood 67:362–365PubMed Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW (1986) Thrombomodulin, an endothelial anticoagulant protein, is absent from the human-brain. Blood 67:362–365PubMed
55.
go back to reference Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. New Engl J Med 361:345–357PubMedCrossRef Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. New Engl J Med 361:345–357PubMedCrossRef
56.
go back to reference Bajzar L, Morser J, Nesheim M (1996) TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 271:16603–16608PubMedCrossRef Bajzar L, Morser J, Nesheim M (1996) TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 271:16603–16608PubMedCrossRef
57.
go back to reference Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR, Conway EM (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4:1813–1824PubMedCrossRef Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR, Conway EM (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4:1813–1824PubMedCrossRef
58.
go back to reference Fukudome K, Kurosawa S, StearnsKurosawa DJ, He XH, Rezaie AR, Esmon CT (1996) The endothelial cell protein C receptor—cell surface expression and direct ligand binding by the soluble receptor. J Biol Chem 271:17491–17498PubMedCrossRef Fukudome K, Kurosawa S, StearnsKurosawa DJ, He XH, Rezaie AR, Esmon CT (1996) The endothelial cell protein C receptor—cell surface expression and direct ligand binding by the soluble receptor. J Biol Chem 271:17491–17498PubMedCrossRef
59.
go back to reference Bae JS, Yang LK, Rezaie AR (2007) Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci U S A 104:2867–2872PubMedCrossRef Bae JS, Yang LK, Rezaie AR (2007) Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci U S A 104:2867–2872PubMedCrossRef
60.
go back to reference Russo A, Soh UJK, Paing MM, Arora P, Trejo J (2009) Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci U S A 106:6393–6397PubMedCrossRef Russo A, Soh UJK, Paing MM, Arora P, Trejo J (2009) Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci U S A 106:6393–6397PubMedCrossRef
61.
go back to reference Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, Pendurthi UR, Rao LVM (2011) Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 117:3199–3208PubMedCrossRef Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, Pendurthi UR, Rao LVM (2011) Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 117:3199–3208PubMedCrossRef
62.
go back to reference Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184PubMedCrossRef Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184PubMedCrossRef
63.
go back to reference Niessen F, Furlan-Freguia C, Fernandez JA, Mosnier LO, Castellino FJ, Weiler H, Rosen H, Griffin JH, Ruf W (2009) Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality. Blood 113:2859–2866 (Retracted Blood (2011) 117: 7188)PubMedCrossRef Niessen F, Furlan-Freguia C, Fernandez JA, Mosnier LO, Castellino FJ, Weiler H, Rosen H, Griffin JH, Ruf W (2009) Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality. Blood 113:2859–2866 (Retracted Blood (2011) 117: 7188)PubMedCrossRef
64.
go back to reference Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, ndrade-Gordon P, Rosen H, Ruf W (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452:654–658PubMedCrossRef Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, ndrade-Gordon P, Rosen H, Ruf W (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452:654–658PubMedCrossRef
65.
go back to reference Singleton PA, Moreno-Vinasco L, Sammani S, Wanderling SL, Moss J, Garcia JGN (2007) Attenuation of vascular permeability by methylnaltrexone—role of mOP-R and S1P3 transactivation. Am J Respir Cell and Mol Biol 37:222–231CrossRef Singleton PA, Moreno-Vinasco L, Sammani S, Wanderling SL, Moss J, Garcia JGN (2007) Attenuation of vascular permeability by methylnaltrexone—role of mOP-R and S1P3 transactivation. Am J Respir Cell and Mol Biol 37:222–231CrossRef
66.
go back to reference Bae JS, Rezaie AR (2009) Thrombin inhibits nuclear factor kappa B and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost 101:513–520PubMed Bae JS, Rezaie AR (2009) Thrombin inhibits nuclear factor kappa B and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost 101:513–520PubMed
67.
go back to reference Van Sluis GL, Niers TMH, Esmon CT, Tigchelaar W, Richel DJ, Buller HR, Van Noorden CJF, Spek CA (2009) Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood 114:1968–1973PubMedCrossRef Van Sluis GL, Niers TMH, Esmon CT, Tigchelaar W, Richel DJ, Buller HR, Van Noorden CJF, Spek CA (2009) Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood 114:1968–1973PubMedCrossRef
68.
go back to reference Garcia JGN, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamburg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Investig 108:689–701PubMed Garcia JGN, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamburg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Investig 108:689–701PubMed
69.
go back to reference Cao CZ, Gao YM, Li Y, Antalis TM, Castellino FJ, Zhang L (2010) The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Investig 120:1971–1980PubMedCrossRef Cao CZ, Gao YM, Li Y, Antalis TM, Castellino FJ, Zhang L (2010) The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Investig 120:1971–1980PubMedCrossRef
70.
go back to reference Kerschen E, Hernandez I, Zogg M, Jia SA, Hessner MJ, Fernandez JA, Griffin JH, Huettner CS, Castellino FJ, Weiler H (2010) Activated protein C targets CD8(+) dendritic cells to reduce the mortality of endotoxemia in mice. J Clin Investig 120:3167–3178PubMedCrossRef Kerschen E, Hernandez I, Zogg M, Jia SA, Hessner MJ, Fernandez JA, Griffin JH, Huettner CS, Castellino FJ, Weiler H (2010) Activated protein C targets CD8(+) dendritic cells to reduce the mortality of endotoxemia in mice. J Clin Investig 120:3167–3178PubMedCrossRef
71.
go back to reference Scaldaferri F, Sans M, Vetrano S, Graziani C, De Cristofaro R, Gerlitz B, Repici A, Arena V, Malesci A, Panes J, Grinnell BW, Danese S (2007) Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Investig 117:1951–1960PubMedCrossRef Scaldaferri F, Sans M, Vetrano S, Graziani C, De Cristofaro R, Gerlitz B, Repici A, Arena V, Malesci A, Panes J, Grinnell BW, Danese S (2007) Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Investig 117:1951–1960PubMedCrossRef
72.
go back to reference Ye XB, Ding JQ, Zhou XZ, Chen GQ, Liu SF (2008) Divergent roles of endothelial NF-kappa B in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med 205:1303–1315PubMedCrossRef Ye XB, Ding JQ, Zhou XZ, Chen GQ, Liu SF (2008) Divergent roles of endothelial NF-kappa B in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med 205:1303–1315PubMedCrossRef
73.
go back to reference Song DM, Ye XB, Xu HL, Liu SF (2009) Activation of endothelial intrinsic NF-kappa B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114:2521–2529PubMedCrossRef Song DM, Ye XB, Xu HL, Liu SF (2009) Activation of endothelial intrinsic NF-kappa B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114:2521–2529PubMedCrossRef
74.
go back to reference Guitton C, Cottereau A, Gerard N, Quillard T, Chauveau A, Devalliere J, Tonnerre P, Charreau B (2011) Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-kappa B, and ERK1/2 MAP kinases. Am J Physiol Cell Physiol 300:C833–C842PubMedCrossRef Guitton C, Cottereau A, Gerard N, Quillard T, Chauveau A, Devalliere J, Tonnerre P, Charreau B (2011) Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-kappa B, and ERK1/2 MAP kinases. Am J Physiol Cell Physiol 300:C833–C842PubMedCrossRef
75.
go back to reference O'Brien LA, Richardson MA, Mehrbod SF, Berg DT, Gerlitz B, Gupta A, Grinnell BW (2007) Activated protein c decreases tumor necrosis factor-related apoptosis-inducing ligand by an EPCR-Independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 27:2634–2641PubMedCrossRef O'Brien LA, Richardson MA, Mehrbod SF, Berg DT, Gerlitz B, Gupta A, Grinnell BW (2007) Activated protein c decreases tumor necrosis factor-related apoptosis-inducing ligand by an EPCR-Independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 27:2634–2641PubMedCrossRef
76.
go back to reference Berriman JA, Li S, Hewlett LJ, Wasilewski S, Kiskin FN, Carter T, Hannah MJ, Rosenthal PB (2009) Structural organization of Weibel—Palade bodies revealed by cryo-EM of vitrified endothelial cells. Proc Natl Aca Sci U S A 106:17407–17412CrossRef Berriman JA, Li S, Hewlett LJ, Wasilewski S, Kiskin FN, Carter T, Hannah MJ, Rosenthal PB (2009) Structural organization of Weibel—Palade bodies revealed by cryo-EM of vitrified endothelial cells. Proc Natl Aca Sci U S A 106:17407–17412CrossRef
77.
78.
go back to reference Giblin JP, Hewlett LJ, Hannah MJ (2008) Basal secretion of von Willebrand factor from human endothelial cells. Blood 112:957–964PubMedCrossRef Giblin JP, Hewlett LJ, Hannah MJ (2008) Basal secretion of von Willebrand factor from human endothelial cells. Blood 112:957–964PubMedCrossRef
79.
go back to reference Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel–Palade bodies. Blood 103:4150–4156PubMedCrossRef Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel–Palade bodies. Blood 103:4150–4156PubMedCrossRef
80.
go back to reference Bae JS, Rezaie AR (2010) Thrombin upregulates the angiopoietin-Tie2 Axis: endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel–Palade bodies. J Thromb Haemost 8:1107–1115PubMed Bae JS, Rezaie AR (2010) Thrombin upregulates the angiopoietin-Tie2 Axis: endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel–Palade bodies. J Thromb Haemost 8:1107–1115PubMed
81.
go back to reference Valentijn KM, van Driel LF, Mourik MJ, Hendriks GJ, Arends TJ, Koster AJ, Valentijn JA (2010) Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 116:1807–1816PubMedCrossRef Valentijn KM, van Driel LF, Mourik MJ, Hendriks GJ, Arends TJ, Koster AJ, Valentijn JA (2010) Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 116:1807–1816PubMedCrossRef
82.
go back to reference Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J (2011) Functional architecture of Weibel–Palade bodies. Blood 117(19):5033–5043PubMedCrossRef Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J (2011) Functional architecture of Weibel–Palade bodies. Blood 117(19):5033–5043PubMedCrossRef
83.
go back to reference Cleator JH, Zhu WQ, Vaughan DE, Hamm HE (2006) Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP. Blood 107:2736–2744PubMedCrossRef Cleator JH, Zhu WQ, Vaughan DE, Hamm HE (2006) Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP. Blood 107:2736–2744PubMedCrossRef
84.
go back to reference Turner NA, Nolasco L, Ruggeri ZM, Moake JL (2009) Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114:5102–5111PubMedCrossRef Turner NA, Nolasco L, Ruggeri ZM, Moake JL (2009) Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114:5102–5111PubMedCrossRef
85.
go back to reference Shim K, Anderson PJ, Tuley EA, Wiswall E, Sadler JE (2008) Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood 111:651–657PubMedCrossRef Shim K, Anderson PJ, Tuley EA, Wiswall E, Sadler JE (2008) Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood 111:651–657PubMedCrossRef
86.
go back to reference Majerus EM, Zheng XL, Tuley EA, Sadler JE (2003) Cleavage of the ADAMTS13 propeptide is not required for protease activity. J Biol Chem 278:46643–46648PubMedCrossRef Majerus EM, Zheng XL, Tuley EA, Sadler JE (2003) Cleavage of the ADAMTS13 propeptide is not required for protease activity. J Biol Chem 278:46643–46648PubMedCrossRef
87.
go back to reference Vomund AN, Majerus EM (2009) ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor. J Biol Chem 284:30925–30932PubMedCrossRef Vomund AN, Majerus EM (2009) ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor. J Biol Chem 284:30925–30932PubMedCrossRef
88.
go back to reference Davis AK, Makar RS, Stowell CP, Kuter DJ, Dzik WH (2009) ADAMTS13 binds to CD36: a potential mechanism for platelet and endothelial localization of ADAMTS13. Transfusion 49:206–213PubMedCrossRef Davis AK, Makar RS, Stowell CP, Kuter DJ, Dzik WH (2009) ADAMTS13 binds to CD36: a potential mechanism for platelet and endothelial localization of ADAMTS13. Transfusion 49:206–213PubMedCrossRef
89.
go back to reference Bonnefoy A, Daenens K, Feys HB, De Vos R, Vandervoort P, Vermylen J, Lawler J, Hoylaerts MF (2006) Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 107:955–964PubMedCrossRef Bonnefoy A, Daenens K, Feys HB, De Vos R, Vandervoort P, Vermylen J, Lawler J, Hoylaerts MF (2006) Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 107:955–964PubMedCrossRef
90.
go back to reference Rock G, Clark W, Sternbach M, Kolajova M, McLaine P (2005) Haemolytic uraemic syndrome is an immune-mediated disease: role of anti-CD36 antibodies. Br J Haematol 131:247–252PubMedCrossRef Rock G, Clark W, Sternbach M, Kolajova M, McLaine P (2005) Haemolytic uraemic syndrome is an immune-mediated disease: role of anti-CD36 antibodies. Br J Haematol 131:247–252PubMedCrossRef
91.
go back to reference Claus RA, Bockmeyer CL, Sossdorf M, Losche W (2010) The balance between von-Willebrand factor and its cleaving protease ADAMTS13: biomarker in systemic inflammation and development of organ failure? Curr Mol Med 10:236–248PubMedCrossRef Claus RA, Bockmeyer CL, Sossdorf M, Losche W (2010) The balance between von-Willebrand factor and its cleaving protease ADAMTS13: biomarker in systemic inflammation and development of organ failure? Curr Mol Med 10:236–248PubMedCrossRef
92.
go back to reference Manea M, Karpman D (2009) Molecular basis of ADAMTS13 dysfunction in thrombotic thrombocytopenic purpura. Pediatr Nephrol 24:447–458PubMedCrossRef Manea M, Karpman D (2009) Molecular basis of ADAMTS13 dysfunction in thrombotic thrombocytopenic purpura. Pediatr Nephrol 24:447–458PubMedCrossRef
93.
go back to reference Reiter RA, Varadi K, Turecek PL, Jilma B, Knobl P (2005) Changes in ADAMTS13 (von-Willebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost 93:554–558PubMed Reiter RA, Varadi K, Turecek PL, Jilma B, Knobl P (2005) Changes in ADAMTS13 (von-Willebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost 93:554–558PubMed
94.
go back to reference Cao WJ, Niiya M, Zheng XW, Shang DZ, Zheng XL (2008) Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial cells. J Thromb Haemost 6:1233–1235PubMedCrossRef Cao WJ, Niiya M, Zheng XW, Shang DZ, Zheng XL (2008) Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial cells. J Thromb Haemost 6:1233–1235PubMedCrossRef
95.
go back to reference Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD (2008) ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 205:2065–2074PubMedCrossRef Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD (2008) ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 205:2065–2074PubMedCrossRef
96.
go back to reference Motto DG, Chauhan AK, Zhu GJ, Homeister J, Lamb CB, Desch KC, Tsai HM, Wagner DD, Ginsburg D (2005) Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. Blood 106:723 Motto DG, Chauhan AK, Zhu GJ, Homeister J, Lamb CB, Desch KC, Tsai HM, Wagner DD, Ginsburg D (2005) Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. Blood 106:723
97.
go back to reference Huang J, Motto DG, Bundle DR, Sadler JE (2010) Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood 116:3653–3659PubMedCrossRef Huang J, Motto DG, Bundle DR, Sadler JE (2010) Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood 116:3653–3659PubMedCrossRef
98.
go back to reference Feys HB, Roodt J, Vandeputte N, Pareyn I, Lamprecht S, van Rensburg WJ, Anderson PJ, Budde U, Louw VJ, Badenhorst PN, Deckmyn H, Vanhoorelbeke K (2010) Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood 116:2005–2010PubMedCrossRef Feys HB, Roodt J, Vandeputte N, Pareyn I, Lamprecht S, van Rensburg WJ, Anderson PJ, Budde U, Louw VJ, Badenhorst PN, Deckmyn H, Vanhoorelbeke K (2010) Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood 116:2005–2010PubMedCrossRef
99.
go back to reference Sixma JJ, vanZanten GH, Huizinga EG, vanderPlas RM, Verkley M, Wu YP, Gros P, deGroot PG (1997) Platelet adhesion to collagen: an update. Thromb Haemost 78:434–438PubMed Sixma JJ, vanZanten GH, Huizinga EG, vanderPlas RM, Verkley M, Wu YP, Gros P, deGroot PG (1997) Platelet adhesion to collagen: an update. Thromb Haemost 78:434–438PubMed
100.
go back to reference Pearson JD (1999) Endothelial cell function and thrombosis. Best Pract Res Clin Haematol 12:329–341CrossRef Pearson JD (1999) Endothelial cell function and thrombosis. Best Pract Res Clin Haematol 12:329–341CrossRef
101.
go back to reference Gerritsen ME (1987) Functional-heterogeneity of vascular endothelial-cells—commentary. Biochem Pharmacol 36:2701–2711PubMedCrossRef Gerritsen ME (1987) Functional-heterogeneity of vascular endothelial-cells—commentary. Biochem Pharmacol 36:2701–2711PubMedCrossRef
102.
go back to reference Fulton D, Gratton JP, Mccabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601PubMedCrossRef Fulton D, Gratton JP, Mccabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601PubMedCrossRef
103.
go back to reference Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605PubMedCrossRef Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605PubMedCrossRef
104.
go back to reference Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, Herz J, Urbanus RT, de Groot PG, Thorpe PE, Salmon JE, Shaul PW, Mineo C (2011) Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta 2GPI and apoER2. J Clin Investig 121:120–131PubMedCrossRef Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, Herz J, Urbanus RT, de Groot PG, Thorpe PE, Salmon JE, Shaul PW, Mineo C (2011) Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta 2GPI and apoER2. J Clin Investig 121:120–131PubMedCrossRef
105.
go back to reference Li Z, Nardi MA, Li YS, Zhang W, Pan RM, Dang SY, Yee H, Quartermain D, Jonas S, Karpatkin S (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113:6051–6060PubMedCrossRef Li Z, Nardi MA, Li YS, Zhang W, Pan RM, Dang SY, Yee H, Quartermain D, Jonas S, Karpatkin S (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113:6051–6060PubMedCrossRef
106.
go back to reference Medcalf RL (2007) Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5:132–142PubMedCrossRef Medcalf RL (2007) Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5:132–142PubMedCrossRef
107.
go back to reference Emeis JJ, vandenEijndenSchrauwen Y, vandenHoogen CM, dePriester W, Westmuckett A, Lupu F (1997) An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 139:245–256PubMedCrossRef Emeis JJ, vandenEijndenSchrauwen Y, vandenHoogen CM, dePriester W, Westmuckett A, Lupu F (1997) An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 139:245–256PubMedCrossRef
108.
go back to reference Huber D, Cramer EM, Kaufmann JE, Meda P, Masse JM, Kruithof EKO, Vischer UM (2002) Tissue-type plasminogen activator (t-PA) is stored in Weibel–Palade bodies in human endothelial cells both in vitro and in vivo. Blood 99:3637–3645PubMedCrossRef Huber D, Cramer EM, Kaufmann JE, Meda P, Masse JM, Kruithof EKO, Vischer UM (2002) Tissue-type plasminogen activator (t-PA) is stored in Weibel–Palade bodies in human endothelial cells both in vitro and in vivo. Blood 99:3637–3645PubMedCrossRef
109.
go back to reference Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95:365–377PubMedCrossRef Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95:365–377PubMedCrossRef
110.
go back to reference vanHinsbergh VWM, Vandenberg EA, Fiers W, Dooijewaard G (1990) Tumor-necrosis-factor induces the production of urokinase-type plasminogen-activator by human endothelial-cells. Blood 75:1991–1998 vanHinsbergh VWM, Vandenberg EA, Fiers W, Dooijewaard G (1990) Tumor-necrosis-factor induces the production of urokinase-type plasminogen-activator by human endothelial-cells. Blood 75:1991–1998
111.
go back to reference Blasi F, Sidenius N (2010) The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 584:1923–1930PubMedCrossRef Blasi F, Sidenius N (2010) The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 584:1923–1930PubMedCrossRef
112.
go back to reference Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114:237–247PubMedCrossRef Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114:237–247PubMedCrossRef
113.
go back to reference Prager GW, Breuss JM, Steurer S, Olcaydu D, Mihaly J, Brunner PM, Stockinger H, Binder BR (2004) Vascular endothelial growth factor receptor-2-induced initial endothelial cell migration depends on the presence of the urokinase receptor. Circ Res 94:1562–1570PubMedCrossRef Prager GW, Breuss JM, Steurer S, Olcaydu D, Mihaly J, Brunner PM, Stockinger H, Binder BR (2004) Vascular endothelial growth factor receptor-2-induced initial endothelial cell migration depends on the presence of the urokinase receptor. Circ Res 94:1562–1570PubMedCrossRef
114.
go back to reference van Hinsbergh VWM, Engelse MA, Quax PHA (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26:716–728PubMedCrossRef van Hinsbergh VWM, Engelse MA, Quax PHA (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26:716–728PubMedCrossRef
115.
go back to reference Connolly BM, Choi EY, Gardsvoll H, Bey AL, Currie BM, Chavakis T, Liu SH, Molinolo A, Ploug M, Leppla SH, Bugge TH (2010) Selective abrogation of the uPA-uPAR interaction in vivo reveals a novel role in suppression of fibrin-associated inflammation. Blood 116:1593–1603PubMedCrossRef Connolly BM, Choi EY, Gardsvoll H, Bey AL, Currie BM, Chavakis T, Liu SH, Molinolo A, Ploug M, Leppla SH, Bugge TH (2010) Selective abrogation of the uPA-uPAR interaction in vivo reveals a novel role in suppression of fibrin-associated inflammation. Blood 116:1593–1603PubMedCrossRef
116.
go back to reference Sawdey MS, Loskutoff DJ (1991) Regulation of murine type-1 plasminogen-activator inhibitor gene-expression invivo - tissue-specificity and induction by lipopolysaccharide, tumor-necrosis-factor-alpha, and transforming growth-factor-beta. J Clin Investig 88:1346–1353PubMedCrossRef Sawdey MS, Loskutoff DJ (1991) Regulation of murine type-1 plasminogen-activator inhibitor gene-expression invivo - tissue-specificity and induction by lipopolysaccharide, tumor-necrosis-factor-alpha, and transforming growth-factor-beta. J Clin Investig 88:1346–1353PubMedCrossRef
117.
go back to reference vanHinsbergh VWM, Kooistra T, Vandenberg EA, Princen HMG, Fiers W, Emeis JJ (1988) Tumor necrosis factor increases the production of plasminogen-activator inhibitor in human-endothelial cells-invitro and in rats invivo. Blood 72:1467–1473 vanHinsbergh VWM, Kooistra T, Vandenberg EA, Princen HMG, Fiers W, Emeis JJ (1988) Tumor necrosis factor increases the production of plasminogen-activator inhibitor in human-endothelial cells-invitro and in rats invivo. Blood 72:1467–1473
118.
go back to reference vanHinsbergh VWM, Bertina RM, Vanwijngaarden A, Vantilburg NH, Emeis JJ, Haverkate F (1985) Activated protein-C decreases plasminogen-activator inhibitor activity in endothelial cell-conditioned medium. Blood 65:444–451 vanHinsbergh VWM, Bertina RM, Vanwijngaarden A, Vantilburg NH, Emeis JJ, Haverkate F (1985) Activated protein-C decreases plasminogen-activator inhibitor activity in endothelial cell-conditioned medium. Blood 65:444–451
119.
go back to reference Sakata Y, Curriden S, Lawrence D, Griffin JH, Loskutoff DJ (1985) Activated protein-C stimulates the fibrinolytic-activity of cultured endothelial-cells and decreases anti-activator activity. Proc Natl Acad Sci U S A 82:1121–1125PubMedCrossRef Sakata Y, Curriden S, Lawrence D, Griffin JH, Loskutoff DJ (1985) Activated protein-C stimulates the fibrinolytic-activity of cultured endothelial-cells and decreases anti-activator activity. Proc Natl Acad Sci U S A 82:1121–1125PubMedCrossRef
120.
go back to reference van Hinsbergh VWM, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. In: Nieuwenhuizen W, Mosesson MW, DeMaat MPM (eds). Ann N Y Acad Sci 936:426–437. van Hinsbergh VWM, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. In: Nieuwenhuizen W, Mosesson MW, DeMaat MPM (eds). Ann N Y Acad Sci 936:426–437.
121.
go back to reference Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188:333–346PubMedCrossRef Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188:333–346PubMedCrossRef
122.
go back to reference Ribes JA, Ni F, Wagner DD, Francis CW (1989) Mediation of fibrin-induced release of von Willebrand-factor from cultured endothelial-cells by the fibrin beta-chain. J Clin Investig 84:435–442PubMedCrossRef Ribes JA, Ni F, Wagner DD, Francis CW (1989) Mediation of fibrin-induced release of von Willebrand-factor from cultured endothelial-cells by the fibrin beta-chain. J Clin Investig 84:435–442PubMedCrossRef
123.
go back to reference Guo YH, Hernandez I, Isermann B, Kang TB, Medved L, Sood R, Kerschen EJ, Holyst T, Mosesson MW, Weiler H (2009) Caveolin-1-dependent apoptosis induced by fibrin degradation products. Blood 113:4431–4439PubMedCrossRef Guo YH, Hernandez I, Isermann B, Kang TB, Medved L, Sood R, Kerschen EJ, Holyst T, Mosesson MW, Weiler H (2009) Caveolin-1-dependent apoptosis induced by fibrin degradation products. Blood 113:4431–4439PubMedCrossRef
124.
go back to reference Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Groger M, Wolff K, Zacharowski K (2005) The fibrin-derived peptide B beta(15–42) protects the myocardium against ischemia-reperfusion injury. Nat Med 11:298–304PubMedCrossRef Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Groger M, Wolff K, Zacharowski K (2005) The fibrin-derived peptide B beta(15–42) protects the myocardium against ischemia-reperfusion injury. Nat Med 11:298–304PubMedCrossRef
125.
go back to reference Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD, Butter C, Grip L, Hansen PR, Suselbeck T, Clemmensen PM, Marin-Galiano M, Geudelin B, Buser PT (2009) Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the FIRE (Efficacy of FX06 in the prevention of myocardial reperfusion injury) trial. J Am Coll Cardiol 53:720–729PubMedCrossRef Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD, Butter C, Grip L, Hansen PR, Suselbeck T, Clemmensen PM, Marin-Galiano M, Geudelin B, Buser PT (2009) Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the FIRE (Efficacy of FX06 in the prevention of myocardial reperfusion injury) trial. J Am Coll Cardiol 53:720–729PubMedCrossRef
126.
go back to reference Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K, Aziz S, Cardona C, Hammond WP, Savidge GF, Rafii S, Sobel M (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31PubMedCrossRef Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K, Aziz S, Cardona C, Hammond WP, Savidge GF, Rafii S, Sobel M (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31PubMedCrossRef
127.
go back to reference Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233PubMedCrossRef Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233PubMedCrossRef
128.
go back to reference van Gils JM, Zwaginga JJ, Hordijk PL (2009) Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 85:195–204PubMedCrossRef van Gils JM, Zwaginga JJ, Hordijk PL (2009) Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 85:195–204PubMedCrossRef
129.
go back to reference Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274PubMedCrossRef Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274PubMedCrossRef
130.
go back to reference Lutgens E, Gorelik L, Daemen MJAP, de Muinck E, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5:1313–1316PubMedCrossRef Lutgens E, Gorelik L, Daemen MJAP, de Muinck E, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5:1313–1316PubMedCrossRef
Metadata
Title
Endothelium—role in regulation of coagulation and inflammation
Author
Victor W. M. van Hinsbergh
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 1/2012
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-011-0285-5

Other articles of this Issue 1/2012

Seminars in Immunopathology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.