Skip to main content
Top
Published in: Seminars in Immunopathology 4/2008

01-12-2008 | Review

Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδ T cell development

Authors: Tom Taghon, Ellen V. Rothenberg

Published in: Seminars in Immunopathology | Issue 4/2008

Login to get access

Abstract

Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the αβ versus γδ T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the αβ and γδ developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.
Literature
1.
2.
go back to reference Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745 doi:10.1016/j.immuni.2004.05.004 PubMed Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745 doi:10.​1016/​j.​immuni.​2004.​05.​004 PubMed
7.
10.
go back to reference Sambandam A, Maillard I, Zediak VP et al (2005) Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6:663–670 doi:10.1038/ni1216 PubMed Sambandam A, Maillard I, Zediak VP et al (2005) Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6:663–670 doi:10.​1038/​ni1216 PubMed
11.
go back to reference Hozumi K, Negishi N, Suzuki D et al (2004) Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 5:638–644 doi:10.1038/ni1075 PubMed Hozumi K, Negishi N, Suzuki D et al (2004) Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 5:638–644 doi:10.​1038/​ni1075 PubMed
13.
go back to reference Besseyrias V, Fiorini E, Strobl LJ et al (2007) Hierarchy of Notch–Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204:331–343 doi:10.1084/jem.20061442 PubMed Besseyrias V, Fiorini E, Strobl LJ et al (2007) Hierarchy of Notch–Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204:331–343 doi:10.​1084/​jem.​20061442 PubMed
14.
16.
go back to reference Schmitt TM, Ciofani M, Petrie HT et al (2004) Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 200:469–479 doi:10.1084/jem.20040394 PubMed Schmitt TM, Ciofani M, Petrie HT et al (2004) Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 200:469–479 doi:10.​1084/​jem.​20040394 PubMed
18.
go back to reference Taghon TN, David ES, Zuniga-Pflucker JC et al (2005) Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 19:965–978 doi:10.1101/gad.1298305 PubMed Taghon TN, David ES, Zuniga-Pflucker JC et al (2005) Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 19:965–978 doi:10.​1101/​gad.​1298305 PubMed
19.
20.
go back to reference Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855 doi:10.1038/ni1486 PubMed Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855 doi:10.​1038/​ni1486 PubMed
29.
go back to reference Anderson MK, Pant R, Miracle AL et al (2004) Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. J Immunol 172:5851–5860PubMed Anderson MK, Pant R, Miracle AL et al (2004) Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. J Immunol 172:5851–5860PubMed
30.
go back to reference Miracle AL, Anderson MK, Litman RT et al (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580 doi:10.1093/intimm/13.4.567 PubMed Miracle AL, Anderson MK, Litman RT et al (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580 doi:10.​1093/​intimm/​13.​4.​567 PubMed
31.
go back to reference Cunningham CP, Kimpton WG, Fernando A et al (2001) Neonatal thymectomy identifies two major pools of sessile and recirculating peripheral T cells which appear to be under separate homeostatic control. Int Immunol 13:1351–1359 doi:10.1093/intimm/13.11.1351 PubMed Cunningham CP, Kimpton WG, Fernando A et al (2001) Neonatal thymectomy identifies two major pools of sessile and recirculating peripheral T cells which appear to be under separate homeostatic control. Int Immunol 13:1351–1359 doi:10.​1093/​intimm/​13.​11.​1351 PubMed
34.
go back to reference Masuda K, Kakugawa K, Nakayama T et al (2007) T cell lineage determination precedes the initiation of TCR beta gene rearrangement. J Immunol 179:3699–3706PubMed Masuda K, Kakugawa K, Nakayama T et al (2007) T cell lineage determination precedes the initiation of TCR beta gene rearrangement. J Immunol 179:3699–3706PubMed
37.
go back to reference Kang J, Volkmann A, Raulet DH (2001) Evidence that gammadelta versus alphabeta T cell fate determination is initiated independently of T cell receptor signaling. J Exp Med 193:689–698 doi:10.1084/jem.193.6.689 PubMed Kang J, Volkmann A, Raulet DH (2001) Evidence that gammadelta versus alphabeta T cell fate determination is initiated independently of T cell receptor signaling. J Exp Med 193:689–698 doi:10.​1084/​jem.​193.​6.​689 PubMed
38.
go back to reference Prinz I, Sansoni A, Kissenpfennig A et al (2006) Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7:995–1003 doi:10.1038/ni1371 PubMed Prinz I, Sansoni A, Kissenpfennig A et al (2006) Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7:995–1003 doi:10.​1038/​ni1371 PubMed
39.
go back to reference Bonneville M, Ishida I, Mombaerts P et al (1989) Blockage of alpha beta T-cell development by TCR gamma delta transgenes. Nature 342:931–934 doi:10.1038/342931a0 PubMed Bonneville M, Ishida I, Mombaerts P et al (1989) Blockage of alpha beta T-cell development by TCR gamma delta transgenes. Nature 342:931–934 doi:10.​1038/​342931a0 PubMed
40.
go back to reference von Boehmer H, Bonneville M, Ishida I et al (1988) Early expression of a T-cell receptor beta-chain transgene suppresses rearrangement of the V gamma 4 gene segment. Proc Natl Acad Sci U S A 85:9729–9732 doi:10.1073/pnas.85.24.9729 von Boehmer H, Bonneville M, Ishida I et al (1988) Early expression of a T-cell receptor beta-chain transgene suppresses rearrangement of the V gamma 4 gene segment. Proc Natl Acad Sci U S A 85:9729–9732 doi:10.​1073/​pnas.​85.​24.​9729
41.
go back to reference Ferrero I, Mancini SJ, Grosjean F et al (2006) TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. J Immunol 177:6038–6043PubMed Ferrero I, Mancini SJ, Grosjean F et al (2006) TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. J Immunol 177:6038–6043PubMed
42.
go back to reference Ishida I, Verbeek S, Bonneville M et al (1990) T-cell receptor gamma delta and gamma transgenic mice suggest a role of a gamma gene silencer in the generation of alpha beta T cells. Proc Natl Acad Sci U S A 87:3067–3071 doi:10.1073/pnas.87.8.3067 PubMed Ishida I, Verbeek S, Bonneville M et al (1990) T-cell receptor gamma delta and gamma transgenic mice suggest a role of a gamma gene silencer in the generation of alpha beta T cells. Proc Natl Acad Sci U S A 87:3067–3071 doi:10.​1073/​pnas.​87.​8.​3067 PubMed
43.
go back to reference Chien YH, Iwashima M, Kaplan KB et al (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682 doi:10.1038/327677a0 PubMed Chien YH, Iwashima M, Kaplan KB et al (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682 doi:10.​1038/​327677a0 PubMed
44.
go back to reference Wilson A, MacDonald HR (1998) A limited role for beta-selection during gamma delta T cell development. J Immunol 161:5851–5854PubMed Wilson A, MacDonald HR (1998) A limited role for beta-selection during gamma delta T cell development. J Immunol 161:5851–5854PubMed
46.
go back to reference Hao QL, George AA, Zhu J et al (2008) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7neg lympho-myeloid thymic progenitors. Blood 111:1318–1326PubMed Hao QL, George AA, Zhu J et al (2008) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7neg lympho-myeloid thymic progenitors. Blood 111:1318–1326PubMed
47.
49.
go back to reference Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723 doi:10.1084/jem.20042524 PubMed Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723 doi:10.​1084/​jem.​20042524 PubMed
50.
go back to reference Carrasco YR, Trigueros C, Ramiro AR et al (1999) Beta-selection is associated with the onset of CD8beta chain expression on CD4(+)CD8alphaalpha(+) pre-T cells during human intrathymic development. Blood 94:3491–3498PubMed Carrasco YR, Trigueros C, Ramiro AR et al (1999) Beta-selection is associated with the onset of CD8beta chain expression on CD4(+)CD8alphaalpha(+) pre-T cells during human intrathymic development. Blood 94:3491–3498PubMed
51.
go back to reference Joachims ML, Chain JL, Hooker SW et al (2006) Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential—differences between men and mice. J Immunol 176:1543–1552PubMed Joachims ML, Chain JL, Hooker SW et al (2006) Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential—differences between men and mice. J Immunol 176:1543–1552PubMed
52.
go back to reference Offner F, Van Beneden K, Debacker V et al (1997) Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 158:4634–4641PubMed Offner F, Van Beneden K, Debacker V et al (1997) Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 158:4634–4641PubMed
53.
54.
go back to reference Aifantis I, Borowski C, Gounari F et al (2002) A critical role for the cytoplasmic tail of pTalpha in T lymphocyte development. Nat Immunol 3:483–488PubMed Aifantis I, Borowski C, Gounari F et al (2002) A critical role for the cytoplasmic tail of pTalpha in T lymphocyte development. Nat Immunol 3:483–488PubMed
57.
go back to reference Kreslavsky T, Garbe AI, Krueger A et al (2008) T cell receptor-instructed {alpha}{beta} versus {gamma}{delta} lineage commitment revealed by single-cell analysis. J Exp Med 205:1173–1186 doi:10.1084/jem.20072425 PubMed Kreslavsky T, Garbe AI, Krueger A et al (2008) T cell receptor-instructed {alpha}{beta} versus {gamma}{delta} lineage commitment revealed by single-cell analysis. J Exp Med 205:1173–1186 doi:10.​1084/​jem.​20072425 PubMed
58.
go back to reference Lewis JM, Girardi M, Roberts SJ et al (2006) Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850 doi:10.1038/ni1363 PubMed Lewis JM, Girardi M, Roberts SJ et al (2006) Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850 doi:10.​1038/​ni1363 PubMed
59.
go back to reference Terrence K, Pavlovich CP, Matechak EO et al (2000) Premature expression of T cell receptor (TCR)alphabeta suppresses TCRgammadelta gene rearrangement but permits development of gammadelta lineage T cells. J Exp Med 192:537–548 doi:10.1084/jem.192.4.537 PubMed Terrence K, Pavlovich CP, Matechak EO et al (2000) Premature expression of T cell receptor (TCR)alphabeta suppresses TCRgammadelta gene rearrangement but permits development of gammadelta lineage T cells. J Exp Med 192:537–548 doi:10.​1084/​jem.​192.​4.​537 PubMed
61.
go back to reference Carleton M, Haks MC, Smeele SA et al (2002) Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. J Immunol 168:1649–1658PubMed Carleton M, Haks MC, Smeele SA et al (2002) Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. J Immunol 168:1649–1658PubMed
62.
63.
go back to reference Xi H, Kersh GJ (2004) Early growth response gene 3 regulates thymocyte proliferation during the transition from CD4−CD8− to CD4+CD8+. J Immunol 172:964–971PubMed Xi H, Kersh GJ (2004) Early growth response gene 3 regulates thymocyte proliferation during the transition from CD4−CD8− to CD4+CD8+. J Immunol 172:964–971PubMed
65.
go back to reference Plum J, De Smedt M, Leclercq G et al (1996) Interleukin-7 is a critical growth factor in early human T-cell development. Blood 88:4239–4245PubMed Plum J, De Smedt M, Leclercq G et al (1996) Interleukin-7 is a critical growth factor in early human T-cell development. Blood 88:4239–4245PubMed
66.
go back to reference Moore TA, von Freeden-Jeffry U, Murray R et al (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 −/− mice. J Immunol 157:2366–2373PubMed Moore TA, von Freeden-Jeffry U, Murray R et al (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 −/− mice. J Immunol 157:2366–2373PubMed
68.
go back to reference Kang J, DiBenedetto B, Narayan K et al (2004) STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol 173:2307–2314PubMed Kang J, DiBenedetto B, Narayan K et al (2004) STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol 173:2307–2314PubMed
69.
go back to reference Kang J, Coles M, Raulet DH (1999) Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med 190:973–982 doi:10.1084/jem.190.7.973 PubMed Kang J, Coles M, Raulet DH (1999) Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med 190:973–982 doi:10.​1084/​jem.​190.​7.​973 PubMed
70.
go back to reference Yui MA, Rothenberg EV (2004) Deranged early T cell development in immunodeficient strains of nonobese diabetic mice. J Immunol 173:5381–5391PubMed Yui MA, Rothenberg EV (2004) Deranged early T cell development in immunodeficient strains of nonobese diabetic mice. J Immunol 173:5381–5391PubMed
71.
go back to reference Huang J, Garrett KP, Pelayo R et al (2005) Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation. J Immunol 175:4858–4865PubMed Huang J, Garrett KP, Pelayo R et al (2005) Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation. J Immunol 175:4858–4865PubMed
72.
go back to reference Balciunaite G, Ceredig R, Fehling HJ et al (2005) The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur J Immunol 35:1292–1300 doi:10.1002/eji.200425822 PubMed Balciunaite G, Ceredig R, Fehling HJ et al (2005) The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur J Immunol 35:1292–1300 doi:10.​1002/​eji.​200425822 PubMed
74.
go back to reference Yu Q, Erman B, Park JH et al (2004) IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development. J Exp Med 200:797–803 doi:10.1084/jem.20032183 PubMed Yu Q, Erman B, Park JH et al (2004) IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development. J Exp Med 200:797–803 doi:10.​1084/​jem.​20032183 PubMed
75.
go back to reference Okamura RM, Sigvardsson M, Galceran J et al (1998) Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20 doi:10.1016/S1074-7613(00)80454-9 PubMed Okamura RM, Sigvardsson M, Galceran J et al (1998) Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20 doi:10.​1016/​S1074-7613(00)80454-9 PubMed
78.
go back to reference Riera-Sans L, Behrens A (2007) Regulation of alphabeta/gammadelta T cell development by the activator protein 1 transcription factor c-Jun. J Immunol 178:5690–5700PubMed Riera-Sans L, Behrens A (2007) Regulation of alphabeta/gammadelta T cell development by the activator protein 1 transcription factor c-Jun. J Immunol 178:5690–5700PubMed
80.
go back to reference Leclercq G, Debacker V, De Smedt M et al (1996) Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J Exp Med 184:325–336 doi:10.1084/jem.184.2.325 PubMed Leclercq G, Debacker V, De Smedt M et al (1996) Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J Exp Med 184:325–336 doi:10.​1084/​jem.​184.​2.​325 PubMed
81.
go back to reference De Creus A, Van Beneden K, Stevenaert F et al (2002) Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol 168:6486–6493PubMed De Creus A, Van Beneden K, Stevenaert F et al (2002) Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol 168:6486–6493PubMed
82.
go back to reference Zhao H, Nguyen H, Kang J (2005) Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271 doi:10.1038/ni1267 PubMed Zhao H, Nguyen H, Kang J (2005) Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271 doi:10.​1038/​ni1267 PubMed
83.
go back to reference Ohteki T, Yoshida H, Matsuyama T et al (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+(NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972 doi:10.1084/jem.187.6.967 PubMed Ohteki T, Yoshida H, Matsuyama T et al (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+(NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972 doi:10.​1084/​jem.​187.​6.​967 PubMed
86.
go back to reference Garbe AI, Krueger A, Gounari F et al (2006) Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J Exp Med 203:1579–1590 doi:10.1084/jem.20060474 PubMed Garbe AI, Krueger A, Gounari F et al (2006) Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J Exp Med 203:1579–1590 doi:10.​1084/​jem.​20060474 PubMed
87.
go back to reference Wolfer A, Wilson A, Nemir M et al (2002) Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 16:869–879 doi:10.1016/S1074-7613(02)00330-8 PubMed Wolfer A, Wilson A, Nemir M et al (2002) Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 16:869–879 doi:10.​1016/​S1074-7613(02)00330-8 PubMed
88.
go back to reference Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888 doi:10.1038/ni1234 PubMed Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888 doi:10.​1038/​ni1234 PubMed
89.
go back to reference Juntilla MM, Wofford JA, Birnbaum MJ et al (2007) Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA 104:12105–12110 doi:10.1073/pnas.0705285104 PubMed Juntilla MM, Wofford JA, Birnbaum MJ et al (2007) Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA 104:12105–12110 doi:10.​1073/​pnas.​0705285104 PubMed
92.
go back to reference De Smedt M, Hoebeke I, Reynvoet K et al (2005) Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506 doi:10.1182/blood-2005-02-0496 PubMed De Smedt M, Hoebeke I, Reynvoet K et al (2005) Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506 doi:10.​1182/​blood-2005-02-0496 PubMed
93.
go back to reference De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029PubMed De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029PubMed
94.
95.
go back to reference La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439 doi:10.1182/blood-2004-04-1293 PubMed La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439 doi:10.​1182/​blood-2004-04-1293 PubMed
96.
go back to reference Garcia-Peydro M, de Yebenes V, Toribio ML (2003) Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. Blood 102:2444–2451 doi:10.1182/blood-2002-10-3261 PubMed Garcia-Peydro M, de Yebenes V, Toribio ML (2003) Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. Blood 102:2444–2451 doi:10.​1182/​blood-2002-10-3261 PubMed
97.
go back to reference Pennington DJ, Silva-Santos B, Shires J et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998 doi:10.1038/ni979 PubMed Pennington DJ, Silva-Santos B, Shires J et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998 doi:10.​1038/​ni979 PubMed
98.
99.
go back to reference Ikawa T, Kawamoto H, Goldrath AW et al (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203:1329–1342 doi:10.1084/jem.20060268 PubMed Ikawa T, Kawamoto H, Goldrath AW et al (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203:1329–1342 doi:10.​1084/​jem.​20060268 PubMed
100.
102.
go back to reference Ichikawa M, Asai T, Saito T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304 doi:10.1038/nm997 PubMed Ichikawa M, Asai T, Saito T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304 doi:10.​1038/​nm997 PubMed
103.
go back to reference Egawa T, Tillman RE, Naoe Y et al (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204:1945–1957 doi:10.1084/jem.20070133 PubMed Egawa T, Tillman RE, Naoe Y et al (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204:1945–1957 doi:10.​1084/​jem.​20070133 PubMed
105.
go back to reference Melichar HJ, Narayan K, Der SD et al (2007) Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 315:230–233 doi:10.1126/science.1135344 PubMed Melichar HJ, Narayan K, Der SD et al (2007) Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 315:230–233 doi:10.​1126/​science.​1135344 PubMed
106.
go back to reference Tydell CC, David-Fung ES, Moore JE et al (2007) Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J Immunol 179:421–438PubMed Tydell CC, David-Fung ES, Moore JE et al (2007) Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J Immunol 179:421–438PubMed
107.
go back to reference Wakabayashi Y, Watanabe H, Inoue J et al (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4:533–539 doi:10.1038/ni927 PubMed Wakabayashi Y, Watanabe H, Inoue J et al (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4:533–539 doi:10.​1038/​ni927 PubMed
108.
go back to reference Inoue J, Kanefuji T, Okazuka K et al (2006) Expression of TCR alpha beta partly rescues developmental arrest and apoptosis of alpha beta T cells in Bcl11b−/− mice. J Immunol 176:5871–5879PubMed Inoue J, Kanefuji T, Okazuka K et al (2006) Expression of TCR alpha beta partly rescues developmental arrest and apoptosis of alpha beta T cells in Bcl11b−/− mice. J Immunol 176:5871–5879PubMed
109.
go back to reference Anderson MK, Hernandez-Hoyos G, Diamond RA et al (1999) Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126:3131–3148PubMed Anderson MK, Hernandez-Hoyos G, Diamond RA et al (1999) Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126:3131–3148PubMed
110.
go back to reference Eyquem S, Chemin K, Fasseu M et al (2004) The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci U S A 101:15712–15717 doi:10.1073/pnas.0405546101 PubMed Eyquem S, Chemin K, Fasseu M et al (2004) The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci U S A 101:15712–15717 doi:10.​1073/​pnas.​0405546101 PubMed
111.
go back to reference Anderson SJ, Miyake S, Loh DY (1989) Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element. Mol Cell Biol 9:4835–4845PubMed Anderson SJ, Miyake S, Loh DY (1989) Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element. Mol Cell Biol 9:4835–4845PubMed
112.
go back to reference Gottschalk LR, Leiden JM (1990) Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol 10:5486–5495PubMed Gottschalk LR, Leiden JM (1990) Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol 10:5486–5495PubMed
113.
go back to reference Kienker LJ, Ghosh MR, Tucker PW (1998) Regulatory elements in the promoter of a murine TCRD V gene segment. J Immunol 161:791–804PubMed Kienker LJ, Ghosh MR, Tucker PW (1998) Regulatory elements in the promoter of a murine TCRD V gene segment. J Immunol 161:791–804PubMed
114.
go back to reference Abrahamsen H, Baillie G, Ngai J et al (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858PubMed Abrahamsen H, Baillie G, Ngai J et al (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858PubMed
115.
go back to reference Rudolph D, Tafuri A, Gass P et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486 doi:10.1073/pnas.95.8.4481 PubMed Rudolph D, Tafuri A, Gass P et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486 doi:10.​1073/​pnas.​95.​8.​4481 PubMed
117.
go back to reference He YW, Beers C, Deftos ML et al (2000) Down-regulation of the orphan nuclear receptor ROR gamma t is essential for T lymphocyte maturation. J Immunol 164:5668–5674PubMed He YW, Beers C, Deftos ML et al (2000) Down-regulation of the orphan nuclear receptor ROR gamma t is essential for T lymphocyte maturation. J Immunol 164:5668–5674PubMed
118.
go back to reference Xie H, Sadim MS, Sun Z (2005) RORgammat recruits steroid receptor coactivators to ensure thymocyte survival. J Immunol 175:3800–3809PubMed Xie H, Sadim MS, Sun Z (2005) RORgammat recruits steroid receptor coactivators to ensure thymocyte survival. J Immunol 175:3800–3809PubMed
119.
go back to reference Rothenberg EV, Yui MA (2008) Development of T cells (Chapter 12). In: Paul WE (ed) Fundamental immunology. 6th edn. Lippincott, Williams & Wilkins, New York, pp 376–406 Rothenberg EV, Yui MA (2008) Development of T cells (Chapter 12). In: Paul WE (ed) Fundamental immunology. 6th edn. Lippincott, Williams & Wilkins, New York, pp 376–406
120.
go back to reference Blom B, Heemskerk MH, Verschuren MC et al (1999) Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors. EMBO J 18:2793–2802 doi:10.1093/emboj/18.10.2793 PubMed Blom B, Heemskerk MH, Verschuren MC et al (1999) Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors. EMBO J 18:2793–2802 doi:10.​1093/​emboj/​18.​10.​2793 PubMed
121.
go back to reference Heemskerk MH, Blom B, Nolan G et al (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602 doi:10.1084/jem.186.9.1597 PubMed Heemskerk MH, Blom B, Nolan G et al (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602 doi:10.​1084/​jem.​186.​9.​1597 PubMed
122.
126.
go back to reference Bain G, Engel I, Robanus Maandag EC et al (1997) E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17:4782–4791PubMed Bain G, Engel I, Robanus Maandag EC et al (1997) E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17:4782–4791PubMed
127.
go back to reference Wojciechowski J, Lai A, Kondo M et al (2007) E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. J Immunol 178:5717–5726PubMed Wojciechowski J, Lai A, Kondo M et al (2007) E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. J Immunol 178:5717–5726PubMed
128.
go back to reference Ghosh JK, Romanow WJ, Murre C (2001) Induction of a diverse T cell receptor gamma/delta repertoire by the helix–loop–helix proteins E2A and HEB in nonlymphoid cells. J Exp Med 193:769–776 doi:10.1084/jem.193.6.769 PubMed Ghosh JK, Romanow WJ, Murre C (2001) Induction of a diverse T cell receptor gamma/delta repertoire by the helix–loop–helix proteins E2A and HEB in nonlymphoid cells. J Exp Med 193:769–776 doi:10.​1084/​jem.​193.​6.​769 PubMed
129.
go back to reference Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ et al (2001) Basic helix–loop–helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 98:2456–2465 doi:10.1182/blood.V98.8.2456 PubMed Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ et al (2001) Basic helix–loop–helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 98:2456–2465 doi:10.​1182/​blood.​V98.​8.​2456 PubMed
131.
go back to reference Barndt R, Dai MF, Zhuang Y (1999) A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol 163:3331–3343PubMed Barndt R, Dai MF, Zhuang Y (1999) A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol 163:3331–3343PubMed
135.
go back to reference Schilham MW, Wilson A, Moerer P et al (1998) Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 161:3984–3991PubMed Schilham MW, Wilson A, Moerer P et al (1998) Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 161:3984–3991PubMed
136.
137.
go back to reference Weerkamp F, Baert MR, Naber BA et al (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103:3322–3326 doi:10.1073/pnas.0511299103 PubMed Weerkamp F, Baert MR, Naber BA et al (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103:3322–3326 doi:10.​1073/​pnas.​0511299103 PubMed
138.
go back to reference Ohteki T, Wilson A, Verbeek S et al (1996) Selectively impaired development of intestinal T cell receptor gamma delta+ cells and liver CD4+NK1+ T cell receptor alpha beta+ cells in T cell factor-1-deficient mice. Eur J Immunol 26:351–355 doi:10.1002/eji.1830260213 PubMed Ohteki T, Wilson A, Verbeek S et al (1996) Selectively impaired development of intestinal T cell receptor gamma delta+ cells and liver CD4+NK1+ T cell receptor alpha beta+ cells in T cell factor-1-deficient mice. Eur J Immunol 26:351–355 doi:10.​1002/​eji.​1830260213 PubMed
139.
140.
go back to reference Ioannidis V, Beermann F, Clevers H et al (2001) The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol 2:691–697 doi:10.1038/90623 PubMed Ioannidis V, Beermann F, Clevers H et al (2001) The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol 2:691–697 doi:10.​1038/​90623 PubMed
141.
go back to reference Huang J, Durum SK, Muegge K (2001) Cutting edge: histone acetylation and recombination at the TCR gamma locus follows IL-7 induction. J Immunol 167:6073–6077PubMed Huang J, Durum SK, Muegge K (2001) Cutting edge: histone acetylation and recombination at the TCR gamma locus follows IL-7 induction. J Immunol 167:6073–6077PubMed
144.
go back to reference Gebuhr TC, Kovalev GI, Bultman S et al (2003) The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med 198:1937–1949 doi:10.1084/jem.20030714 PubMed Gebuhr TC, Kovalev GI, Bultman S et al (2003) The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med 198:1937–1949 doi:10.​1084/​jem.​20030714 PubMed
145.
146.
go back to reference Lagresle C, Gardie B, Eyquem S et al (2002) Transgenic expression of the p16(INK4a) cyclin-dependent kinase inhibitor leads to enhanced apoptosis and differentiation arrest of CD4−CD8− immature thymocytes. J Immunol 168:2325–2331PubMed Lagresle C, Gardie B, Eyquem S et al (2002) Transgenic expression of the p16(INK4a) cyclin-dependent kinase inhibitor leads to enhanced apoptosis and differentiation arrest of CD4−CD8− immature thymocytes. J Immunol 168:2325–2331PubMed
147.
148.
go back to reference Cobb BS, Nesterova TB, Thompson E et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367–1373 doi:10.1084/jem.20050572 PubMed Cobb BS, Nesterova TB, Thompson E et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367–1373 doi:10.​1084/​jem.​20050572 PubMed
149.
150.
go back to reference Swainson L, Kinet S, Manel N et al (2005) Glucose transporter 1 expression identifies a population of cycling CD4+CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc Natl Acad Sci U S A 102:12867–12872 doi:10.1073/pnas.0503603102 PubMed Swainson L, Kinet S, Manel N et al (2005) Glucose transporter 1 expression identifies a population of cycling CD4+CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc Natl Acad Sci U S A 102:12867–12872 doi:10.​1073/​pnas.​0503603102 PubMed
151.
go back to reference Park JH, Mitnacht R, Torres-Nagel N et al (1993) T cell receptor ligation induces interleukin (IL) 2R beta chain expression in rat CD4,8 double positive thymocytes, initiating an IL-2-dependent differentiation pathway of CD8 alpha+/beta− T cells. J Exp Med 177:541–546 doi:10.1084/jem.177.2.541 PubMed Park JH, Mitnacht R, Torres-Nagel N et al (1993) T cell receptor ligation induces interleukin (IL) 2R beta chain expression in rat CD4,8 double positive thymocytes, initiating an IL-2-dependent differentiation pathway of CD8 alpha+/beta− T cells. J Exp Med 177:541–546 doi:10.​1084/​jem.​177.​2.​541 PubMed
Metadata
Title
Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδ T cell development
Authors
Tom Taghon
Ellen V. Rothenberg
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 4/2008
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-008-0134-3

Other articles of this Issue 4/2008

Seminars in Immunopathology 4/2008 Go to the issue